【題目】(公元前5-6世紀),祖沖之之子,齊梁時代的數(shù)學家. 他提出了一條原理:“冪勢既同,則積不容異.這句話的意思是:兩個等幾何體若在所有等高處的水平截面的面積相等,則這兩個何體的體積相等. 該原理在西方到十七世紀才由意大利數(shù)學家卡瓦列利發(fā)現(xiàn),比祖晚一千一百多年. 橢球體是橢繞其軸旋轉所成的旋轉體. 將底面徑皆為,高皆為橢半球體及已被挖去了圓錐體的圓柱體放于同一平面. 以平行于平面的平面于距平面任意高處可橫截得到兩截面,可以證明知總成立. 據(jù)此,短軸長為長軸為球體的體積是 __________

【答案】

【解析】因為總有圓所以,半橢球的體積等于,橢球的體積為,所以,該橢環(huán)體積是,故答案為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告知大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.

(1)求乙班總分超過甲班的概率;

(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分,

請你從平均分和方差的角度來分析兩個班的選手的情況;

主持人從甲乙兩班所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總人數(shù)為,求的分

布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】女共名同學從左至右排成一排合影,要求左端排男同學,右端排女同學,且女同學至多有人排在一起,則不同的排法種數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 滿足 (其中 , ).

1)求 的表達式;

2)對于函數(shù) ,當 時, ,求實數(shù) 的取值范圍.

3)當 時, 的值為負數(shù),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,右焦點,過點的直線交橢圓兩點.

(1)求橢圓的方程;

(2)若點關于軸的對稱點為 ,求證: 三點共線;

(3) 當面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.

(1)求直方圖中x的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從2016年1月1日起全國統(tǒng)一實施全面兩孩政策. 為了解適齡民眾對放開

生二胎政策的態(tài)度,某市選取70后作為調(diào)查對象,隨機調(diào)查了10人,其中打算生二胎

的有4人,不打算生二胎的有6人.

(1)從這10人中隨機抽取3人,記打算生二胎的人數(shù)為,求隨機變量的分布列和數(shù)學期望;

(2)若以這10人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率作為概率,從該市70后中隨機抽取3人,記打算生二胎的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查高中生的數(shù)學成績與學生自主學習時間之間的相關關系.某重點高中數(shù)學教師對高三年級的50名學生進行了跟蹤調(diào)查,其中每周自主做數(shù)學題的時間不少于15小時的有22人,余下的人中,在高三年級模擬考試中數(shù)學平均成績不足120分鐘的占,統(tǒng)計成績后,得到如下的列聯(lián)表:

分數(shù)大于等于120分鐘

分數(shù)不足120分

合計

周做題時間不少于15小時

4

22

周做題時間不足15小時

合計

50

(Ⅰ)請完成上面的列聯(lián)表,并判斷能否有99%以上的把握認為“高中生的數(shù)學成績與學生自主學習時間有關”;

(Ⅱ)(。┌凑辗謱映闃,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到的不足120分且周做題時間不足15小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

(ii) 若將頻率視為概率,從全校大于等于120分的學生中隨機抽取人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案