【題目】已知函數(shù) 滿足 (其中 , ).

1)求 的表達式;

2)對于函數(shù) ,當(dāng) 時, ,求實數(shù) 的取值范圍.

3)當(dāng) 時, 的值為負數(shù),求 的取值范圍.

【答案】1;2;

3

【解析】試題分析:(1)利用換元法,求出函數(shù)的解析式;(2)由f(x)是R上的奇函數(shù),增函數(shù), ,

所以 即可求實數(shù)m取值的集合;

(3)由(1)中的單調(diào)性可將的值恒為負數(shù)轉(zhuǎn)化為f(2)-4≤0,解不等式即可.

試題解析:

1 設(shè) ,則 ,代入原函數(shù)得, ,

2 當(dāng) 時, 是增函數(shù), 是減函數(shù)且 ,

所以 是定義域 上的增函數(shù),

同理,當(dāng) 時, 也是 上的增函數(shù),

,則 為奇函數(shù),

得: ,

所以 解得 ,

則實數(shù) 的取值范圍是

3 因為 是增函數(shù),

所以 時, ,

又當(dāng) 時, 的值為負數(shù),所以

解得 ,

所以 的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)

(1)函數(shù)過定點,求的值;

(2)當(dāng)時,求函數(shù)的最小值;

(3)是否存在實數(shù),使得(2)中關(guān)于的函數(shù)的定義域為時,值域為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選做題】本題包括A、B、C、D四小題,請選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩小題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.

A.[選修4-1:幾何證明選講]

如圖, 分別與圓相切于點, 經(jīng)過圓心,且,求證: .

B.[選修4-2:矩陣與變換]

在平面直角坐標(biāo)系中,已知點 , , ,先將正方形繞原點逆時針旋轉(zhuǎn),再將所得圖形的縱坐標(biāo)壓縮為原來的一半、橫坐標(biāo)不變,求連續(xù)兩次變換所對應(yīng)的矩陣.

C.[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).現(xiàn)以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

D.[選修4-5:不等式選講]

已知為互不相等的正實數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處有相同的切線.

(Ⅰ)若函數(shù)的圖象有兩個交點,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點, ,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,圓的直角坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),射線的極坐標(biāo)方程為

1)求圓和直線的極坐標(biāo)方程;

(2)已知射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,且方程 無實數(shù)根,下列命題:

1)方程 一定有實數(shù)根;

2)若 ,則不等式 對一切實數(shù) 都成立;

3)若 ,則必存在實數(shù) ,使 ;

4)若 ,則不等式 對一切實數(shù) 都成立.

其中,正確命題的序號是________________.(把你認為正確的命題的所有序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(公元前5-6世紀(jì)),祖沖之之子,齊梁時代的數(shù)學(xué)家. 他提出了一條原理:“冪勢既同,則積不容異.這句話的意思是:兩個等幾何體若在所有等高處的水平截面的面積相等,則這兩個何體的體積相等. 該原理在西方到十七世紀(jì)才由意大利數(shù)學(xué)家卡瓦列利發(fā)現(xiàn),比祖晚一千一百多年. 橢球體是橢繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體. 將底面徑皆為高皆為橢半球體及已被挖去了圓錐體的圓柱體放于同一平面. 以平行于平面的平面于距平面任意高處可橫截得到兩截面,可以證明知總成立. 據(jù)此,短軸長為,長軸為球體的體積是 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子公司開發(fā)一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果每個配件的銷售價提高的百分率為,那么月平均銷售量減少的百分率為,記改進工藝后電子公司銷售該配件的月平均利潤是(元).

(1)寫出的函數(shù)關(guān)系式;

(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點為,右焦點為, 為原點, , 軸上的兩個動點,且,直線分別與橢圓交于, 兩點.

 

(Ⅰ)求的面積的最小值;

(Ⅱ)證明: , 三點共線.

查看答案和解析>>

同步練習(xí)冊答案