15.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內的一組基底,則以下的四組向量中不能作為一組基底的是( 。
A.$\overrightarrow{e_1}$,2$\overrightarrow{e_2}$B.$\overrightarrow{e_1}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$
C.-$\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$D.$\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$

分析 $\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內的一組基底,則$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,再考查各組向量是否共線即可.

解答 解:∵$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內的一組基底,則$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,A,B,D三組均不共線,可以作為基底,
對于C,∵$-\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}=-(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})$,∴兩向量共線,不能作為基底,
故選:B.

點評 本題考查了作平面基底的條件,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.某同學報名參加“瘋狂的麥咭”的選拔.已知在備選的10道試題中,該同學能答對其中的6題,規(guī)定每次考試都從備選題中隨機抽出3題進行測試(必須3題全部答完),至少答對2題才能入選.
(Ⅰ)求該同學答對試題數(shù)ξ的概率分布列及數(shù)學期望;
(Ⅱ)設η為該同學答對試題數(shù)與該同學答錯試題數(shù)之差的平方,記“函數(shù)$f(x)=|η-\frac{1}{2}{|^x}$在定義域內單調遞增”為事件C,求事件C的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.清華大學自主招生考試題中要求考生從A,B,C三道題中任選一題作答,考試結束后,統(tǒng)計數(shù)據(jù)顯示共有600名學生參加測試,選擇A,B,C三題答卷數(shù)如下表:
ABC
答卷數(shù)180300120
(Ⅰ)負責招生的教授為了解參加測試的學生答卷情況,現(xiàn)用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應分別從選擇B,C題作答的答卷中各抽出多少份?
(Ⅱ)測試后的統(tǒng)計數(shù)據(jù)顯示,A題的答卷得優(yōu)的有60份,若以頻率作為概率,在(Ⅰ)問中被抽出的選擇A題作答的答卷中,記其中得優(yōu)的份數(shù)為X,求X的分布列及其數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知拋物線C1:y2=2x及圓C2:(x-1)2+y2=1.點P(a,b)為C1上一點.
(Ⅰ)當a=2時,求過點P的圓C2的切線方程;
(Ⅱ)當a>2時,過點P作圓C2的兩條切線l1,l2分別與y軸交于B,C兩點,求△PBC的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知三角形ABC三邊長分別為x、y、1且x,y∈(0,1),則△ABC為銳角三角形的概率是2-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線$\sqrt{3}$x-y-$\sqrt{3}$=0與x軸的交點為N,與拋物線y2=2px(p>0)相交于點A,與拋物線的準線相交于點B,點N為AB的中點.
(1)求拋物線的方程;
(2)過點M(m,0)(m<0)作斜率為$\frac{{\sqrt{3}}}{3}$的直線與拋物線y2=2px相交于C,D兩點,F(xiàn)為拋物線的焦點,如果
|CD|2=$\frac{64}{13}$|FC|•|FD|,求∠CFD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{{{(2x-m)}^2}}}{2-x}$x∈(0,1],它的一個極值點是x=$\frac{1}{2}$
(Ⅰ)求m的值及f(x)在x∈(0,1]上的值域;
(Ⅱ)設函數(shù) g(x)=ex+$\sqrt{x}$-2x,求證:函數(shù)y=f(x)與y=g(x)的圖象在x∈(0,1]上沒有公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知F1,(-1,0),F(xiàn)2(1,0)為平面內的兩個定點,動點P滿足|PF1|+|PF2|=2$\sqrt{2}$,記點P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設點O為坐標原點,點A,B,C是曲線Γ上的不同三點,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$.試探究:直線AB與OC的斜率之積是否為定值?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.邊長為4的菱形ABCD中,滿足∠DCB=60°,點E,F(xiàn)分別是邊CD和CB的中點,AC交BD于點H,AC交EF于點O,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABD,連接PA,PB,PD,得到如圖所示的五棱錐P-ABFED.
(Ⅰ)求證:BD⊥PA;
(Ⅱ)求點D到平面PBF的距離.

查看答案和解析>>

同步練習冊答案