分析 (Ⅰ)根據(jù)面面垂直的性質(zhì)定理即可證明BD⊥PA;
(Ⅱ)設(shè)點D到平面PBF的距離為h,由等體積可得點D到平面PBF的距離.
解答 (Ⅰ)證明:∵平面PEF⊥平面ABD,平面PEF∩平面ABD=EF,PO?PEF,
∴PO⊥平面ABD
則PO⊥BD,
又AO⊥BD,AO∩PO=O,AO?APO,PO?APO,
∴BD⊥平面APO,
∵AP?平面APO,∴BD⊥PA….(6分)
(Ⅱ)解:由題意,O到BC的距離為$\frac{\sqrt{3}}{2}$,PO=$\sqrt{3}$,
∴P到BC的距離為$\sqrt{\frac{3}{4}+3}$=$\frac{\sqrt{15}}{2}$,
設(shè)點D到平面PBF的距離為h,則由等體積可得$\frac{1}{3}×\frac{1}{2}×2×\frac{\sqrt{15}}{2}h=\frac{1}{3}×\frac{1}{2}×4×\sqrt{3}×\sqrt{3}$,
∴h=$\frac{{4\sqrt{15}}}{5}$…(12分)
點評 本題主要考查線線垂直的判定以及點D到平面PBF的距離,考查等體積方法的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{e_1}$,2$\overrightarrow{e_2}$ | B. | $\overrightarrow{e_1}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$ | ||
C. | -$\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$ | D. | $\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{e_1}-\overrightarrow{e_2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (e,+∞) | B. | (-∞,e) | C. | (-∞,$\frac{1}{e}$) | D. | [0,e) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com