分析 (I)四邊形ABCD是正方形,可得AC⊥DB.由DE⊥平面ABCD,可得DE⊥AC,利用線面垂直的判定定理即可證明.
(II)四邊形ABCD是邊長為2的正方形,可得DB=2$\sqrt{2}$,又∠EBD=45°,可得DE=DB=2$\sqrt{2}$.又DE=2AF,可得AF=$\sqrt{2}$.利用線面垂直的性質(zhì)定理可得AF⊥AD.四邊形ADEF的面積S,利用已知可得AB⊥平面ADEF,V四棱錐ADEF=$\frac{1}{3}S•AB$.V三棱錐E-BCD=$\frac{1}{3}DE•{S}_{△BCD}$,即可得出.
解答 (I)證明:∵四邊形ABCD是正方形,∴AC⊥DB.
∵DE⊥平面ABCD,AC?平面ABCD,
∴DE⊥AC,
又DE∩DB=D,∴AC⊥平面BDE.
(II)解:四邊形ABCD是邊長為2的正方形,
∴DB=2$\sqrt{2}$,
又∠EBD=45°,∴DE=DB=2$\sqrt{2}$.
∵DE=2AF,∴AF=$\sqrt{2}$.
∵DE⊥平面ABCD,AF∥DE,
∴DE⊥AD,AF⊥平面ABCD,
∴AF⊥AD.
四邊形ADEF的面積S=$\frac{\sqrt{2}+2\sqrt{2}}{2}×2$=3$\sqrt{2}$.
∵DE⊥平面ABCD,∴DE⊥AB.
又AB⊥AD,AD∩DE=D,
∴AB⊥平面ADEF,
∴V四棱錐B-ADEF=$\frac{1}{3}S•AB$=$\frac{1}{3}×3\sqrt{2}×2$=2$\sqrt{2}$.
V三棱錐E-BCD=$\frac{1}{3}DE•{S}_{△BCD}$=$\frac{1}{3}×2\sqrt{2}×\frac{1}{2}×{2}^{2}$=$\frac{4\sqrt{2}}{3}$.
∴該幾何體的體積=2$\sqrt{2}$+$\frac{4\sqrt{2}}{3}$=$\frac{10\sqrt{2}}{3}$.
點(diǎn)評 本題考查了線面垂直的判定與性質(zhì)定理、三棱錐與四棱錐的體積計(jì)算公式、正方形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) | 7環(huán)以下 |
概率 | 0.16 | 0.32 | 0.24 | 0.20 | 0.08 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
A. | y=1.23x+0.08 | B. | y=1.25x-0.5 | C. | y=1.28x-0.12 | D. | y=1.24x+0.04 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com