【題目】如圖是一幾何體的平面展開(kāi)圖,其中四邊形為正方形,分別為的中點(diǎn).在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )
A.平面平面B.直線平面
C.直線平面D.直線平面
【答案】ABC
【解析】
將幾何體的平面圖還原立體圖,運(yùn)用線面平行的判定定理和面面平行的判定定理對(duì)四個(gè)選項(xiàng)進(jìn)行辨析.
作出立體圖形如圖所示.連接四點(diǎn)構(gòu)成平面.
對(duì)于,因?yàn)?/span>分別是的中點(diǎn),所以.
又平面,平面,所以平面.
同理,平面.又,平面,平面,
所以平面平面,故A正確;
對(duì)于,連接,設(shè)的中點(diǎn)為M,則M也是的中點(diǎn),所以,又平面,平面,所以平面,故B正確;
對(duì)于,由A中的分析知,,所以,因?yàn)?/span>平面,平面,所以直線平面,故C正確;
對(duì)于,根據(jù)C中的分析可知再結(jié)合圖形可得, ,則直線與平面不平行,故D錯(cuò)誤.
故選
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),若曲線在點(diǎn)處切線的斜率為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)令,試討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為了解群眾上下班共享單車(chē)使用情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車(chē)人數(shù)分布如下表:
年齡段 | 20~29 | 30~39 | 40~49 | 50~60 |
頻數(shù) | 12 | 18 | 15 | 5 |
經(jīng)常使用共享單車(chē) | 6 | 12 | 5 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為以40歲為分界點(diǎn)對(duì)是否經(jīng)常使用共享單車(chē)有差異?
年齡低于40歲 | 年齡不低于40歲 | 總計(jì) | |
經(jīng)常使用共享單車(chē) | |||
不經(jīng)常使用共享單車(chē) | |||
總計(jì) |
附:,.
0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車(chē)的群眾中選出6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)解關(guān)于x的不等式;
(2)對(duì)任意的(﹣1,2),恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點(diǎn)共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、、、 為平面直角坐標(biāo)系中兩兩不同的點(diǎn)。若,,且,則稱點(diǎn)、調(diào)和分割點(diǎn)、。已知平面上點(diǎn)、調(diào)和分割點(diǎn) 、.則下面說(shuō)法正確的是()。
A. 可能是線段的中點(diǎn)
B. 可能是線段 的中點(diǎn)
C. 點(diǎn)、 可能同時(shí)在線段上
D. 點(diǎn) 、不可能同時(shí)在線段的延長(zhǎng)線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中,有放回地先后抽得兩張卡片的標(biāo)號(hào)分別為x、y,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為記.
(1)求隨機(jī)變量的最大值,并求事件“取得最大值”的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是曲線上動(dòng)點(diǎn)以及定點(diǎn),
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求面積的最小值,并求出相應(yīng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對(duì)任意正整數(shù),.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)及公比q的值,若不存在,請(qǐng)說(shuō)明理由;
(3)求數(shù)列前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com