【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a1+a3+…+a2n+1.
【答案】(1) (2)
【解析】
試題(1)先根據(jù)等比數(shù)列通項(xiàng)公式得Sn,再根據(jù)和項(xiàng)與通項(xiàng)關(guān)系求數(shù)列{an}的通項(xiàng)公式(2)由于奇數(shù)項(xiàng)從第三項(xiàng)起成等比數(shù)列,所以利用等比數(shù)列求和公式求和
試題解析:解:(1)∵S1=a1=1,
且數(shù)列{Sn}是以2為公比的等比數(shù)列,
∴Sn=2n-1,
又當(dāng)n≥2時,an=Sn-Sn-1=2n-2(2-1)=2n-2.
當(dāng)n=1時,a1=1,不適合上式.
∴an=
(2)a3,a5,…,a2n+1是以2為首項(xiàng),4為公比的等比數(shù)列,
∴a3+a5+…+a2n+1==.
∴a1+a3+…+a2n+1=1+=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對下列命題:
①直線與函數(shù)的圖象相交,則相鄰兩交點(diǎn)的距離為;
②點(diǎn) 是函數(shù)的圖象的一個對稱中心;
③函數(shù)在上單調(diào)遞減,則的取值范圍為;
④函數(shù)若對R恒成立,則.
其中所有正確命題的序號為____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(k>0)
(1)若f(x)>m的解集為{x|x<-3,或x>-2},求不等式5mx2+kx+3>0的解集;
(2)若存在x>3,使得f(x)>1成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中e是自然對數(shù)的底數(shù),k∈R).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)有兩個零點(diǎn)時,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,,分別為棱和棱的中點(diǎn),則下列說法正確的是( )
A.∥平面B.平面截正方體所得截面為等腰梯形
C.平面D.異面直線與所成的角為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度某社區(qū)居委會隨機(jī)抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如表:
得分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男性人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機(jī)抽取一名居民參與問卷測試試估計(jì)其得分不低于60分的概率:
(2)將居民對垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對垃圾分類的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
(3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機(jī)抽取3人作為環(huán)保宣傳隊(duì)長,設(shè)3人中男性隊(duì)長的人數(shù)為,求的分布列和期望.
附:.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體ABCDE中,已知ABCD是邊長為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.
(1)若M是DE的中點(diǎn),試在AC上找一點(diǎn)N,使得MN∥平面ABE,并給出證明;
(2)求多面體ABCDE的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com