分析 (1)求出f(x)的導數,得到關于a,b的方程組,求出a,b的值即可;(2)求出函數的導數,解關于導函數的不等式,求出函數的單調區(qū)間即可.
解答 解:(1)∵(2,f(2))即在3x+3y-8=0上,
∴x=2時,$y=f(2)=\frac{2}{3}$,f'(x)=x2-4ax+b,
即$\left\{{\begin{array}{l}{f(2)=\frac{8}{3}-8a+2b=\frac{2}{3}}\\{k=f'(2)=4-8a+b=-1}\end{array}}\right.⇒\left\{{\begin{array}{l}{a=1}\\{b=3}\end{array}}\right.$;
(2)由(1)知:$f(x)=\frac{1}{3}{x^3}-2{x^2}+3$,
則有f'(x)=x2-4x+3,
$\begin{array}{l}f'(x)>0⇒x<1或x>3\\ f'(x)<0⇒1<x<3\end{array}$,
即f(x)的增區(qū)間:(-∞,1)和[3,+∞),減區(qū)間:[1,3).
點評 本題考查了切線方程問題,考查函數的單調性問題,考查導數的應用,是一道基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 45° | B. | 105° | C. | 15°或105° | D. | 45°或135° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-1<x<0} | B. | {x|x≥1} | C. | {x|x>0} | D. | {x|x>-1} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ①②④ | D. | ①③④ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com