18.若p:a∈R且-1<a<1,q:關(guān)于x的一元二次方程:x2+(a+1)x+a-2=0的一個(gè)根大于零,另一個(gè)根小于零,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 x2+(a+1)x+a-2=0的一個(gè)根大于零,另一個(gè)根小于零,列出不等式組,求出a的范圍,然后利用充要條件判斷方法判斷即可.

解答 解:若關(guān)于x的一元二次方程:x2+(a+1)x+a-2=0的一個(gè)根大于零,另一根小于零,
則$\left\{\begin{array}{l}{△>0}\\{{x}_{1}{x}_{2}=a-2<0}\end{array}\right.$
解得a<2,
由-1<a<1能得出a<2,但由a<2不能得出-1<a<1,
因此p是q的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,充要條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.cos(-1320°)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知復(fù)數(shù)z=$\frac{1+i}{2-i}$,則|z|=$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=(2-a)lnx-2ax-$\frac{1}{x}$,
(1)試討論f(x)的單調(diào)性;
(2)如果當(dāng)x>1時(shí),f(x)<-2a-1,求實(shí)數(shù)a的取值范圍;
(3)記函數(shù)g(x)=f(x)+(a-4)lnx+3ax-$\frac{3a+1}{x}$,若g(x)在區(qū)間[1,4]上不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a為實(shí)數(shù),若復(fù)數(shù)z=(a2-9)+(a+3)i為純虛數(shù),則$\frac{{a+{i^{19}}}}{1+i}$的值為( 。
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.由物理中矢量運(yùn)算及向量坐標(biāo)表示與運(yùn)算,我們知道:
(1)兩點(diǎn)等分單位圓時(shí)有相應(yīng)關(guān)系式為:sinα+sin(π+α)=0,cosα+cos(π+α)=0;
(2)四點(diǎn)等分單位圓時(shí)有相應(yīng)關(guān)系式為:sinα+sin(α+$\frac{π}{2}$)+sin(α+π)+sin(α+$\frac{3π}{2}$)=0,cosα+cos(α+$\frac{π}{2}$)+cos(α+π)+cos(α+$\frac{3π}{2}$)=0.
由此我們可以推測(cè),三點(diǎn)等分單位圓時(shí)的相應(yīng)關(guān)系式為$sinα+sin(α+\frac{2π}{3})+sin(α+\frac{4π}{3})=0$,$cosα+cos(α+\frac{2π}{3})+cos(α+\frac{4π}{3})=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)點(diǎn)(1,0)且與直線x-y+2=0垂直的直線方程是( 。
A.x-y+1=0B.x-y-1=0C.x+y+1=0D.x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知直線l:mx+y+3m-$\sqrt{3}$=0與圓x2+y2=12交于A,B兩點(diǎn),若AB=2$\sqrt{3}$,則實(shí)數(shù)m的值為-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-2ax2+bx在(2,f(2))的切線方程是直線3x+3y-8=0.
(1)求a、b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案