9.(普通班做)直線$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是參數(shù))被圓x2+y2=9截得的弦長等于( 。
A.$\frac{12}{5}$B.$\frac{{9\sqrt{10}}}{5}$C.$\frac{{9\sqrt{2}}}{5}$D.$\frac{{12\sqrt{5}}}{5}$

分析 直線$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是參數(shù)),消去參數(shù)化為普通方程.利用點到直線的距離公式可得:圓心O(0,0)到直線的距離d,即可得出直線被圓x2+y2=9截得的弦長=2$\sqrt{{r}^{2}-qqaxjwo^{2}}$.

解答 解:直線$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是參數(shù)),消去參數(shù)化為普通方程:x-2y+3=0.
圓心O(0,0)到直線的距離d=$\frac{3}{\sqrt{5}}$,
∴直線被圓x2+y2=9截得的弦長=2$\sqrt{{r}^{2}-rus4bew^{2}}$=2$\sqrt{9-(\frac{3}{\sqrt{5}})^{2}}$=$\frac{12\sqrt{5}}{5}$.
故選:D.

點評 本題考查了參數(shù)方程與普通方程的互化、點到直線的距離公式、直線與圓相交弦長公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知α∈(-$\frac{π}{2}$,0),且cos2α=sin(α-$\frac{π}{2}}$),則tan$\frac{α}{2}$等于$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t為參數(shù)),C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)曲線C2交曲線C1于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2ax,g(x)=lnx.
(Ⅰ)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)h(x)=f(x)+g(x)有兩個極值點x1,x2且${x_1}∈(0,\frac{1}{2})$,證明:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)$f(x)=alnx+\frac{1}{2}{x^2}-bx$(a,b∈R,a≠0),x=1為函數(shù)f(x)的極值點.
(1)若x=1為函數(shù)f(x)的極大值點,求f(x)的單調(diào)區(qū)間(用a表示);
(2)若函數(shù)f(x)恰有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時間,隨機對100名男生和100名女生進行了不記名的問卷調(diào)查,得到了如下統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表
 上網(wǎng)時間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
 人數(shù) 525  3025  15
表2:女生上網(wǎng)時間與頻數(shù)分布表
 上網(wǎng)時間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
 人數(shù)10  2040  2010 
(1)若該中學(xué)共有女生600人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(2)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認為“學(xué)生周日上午時間與性別有關(guān)”;
(3)從表3的男生中“上網(wǎng)時間少于60分鐘”和“上網(wǎng)時間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為10的樣本,再從中任取2人,記被抽取的2人中上午時間少于60分鐘的人數(shù)記為X,求X的分布列和數(shù)學(xué)期望.
表3
 上網(wǎng)時間少于60分鐘  上網(wǎng)時間不少于60分鐘合計 
 男生   
 女生   
 合計   
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(k2≥k0 0.50 0.400.25  0.150.10 0.05  0.0250.010  0.0050.001 
k0  0.4550.708  1.3232.072  2.076 3.845.024  6.6357.879  10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,在長方體ABCD-A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點且B1M=2,點N在線段A1D上,A1D⊥AN.
(1)求直線A1D與AM所成角的余弦值;
(2)求直線AD與平面ANM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為4的菱形,∠BAD=120°,PA=3.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)設(shè)AC與BD交于點O,M為OC中點,求PM與平面PAD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-ax+a,a∈R.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(1,e]上無零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案