7.已知數(shù)列{an}是等比數(shù)列,a9是1和3的等差中項(xiàng),則a2a16=4.

分析 利用等差數(shù)列的性質(zhì)可得:2a9=1+3,解得a9,又a2a16=${a}_{9}^{2}$,即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a9是1和3的等差中項(xiàng),∴2a9=1+3,解得a9=2.
由等比數(shù)列的性質(zhì)可得:a2a16=${a}_{9}^{2}$=4,
故答案為:4.

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知無窮等差數(shù)列{an}中,首項(xiàng)a1=3,公差d=-5,依次取出序號能被4除余3的項(xiàng)組成數(shù)列{bn}
(1)求b1和b2;
(2)求{bn}的通項(xiàng)公式;
(3){bn}中的第503項(xiàng)是{an}中的第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$.
(1)若BD=1,試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AD}$;
(2)若D是線段BC上任意一點(diǎn),求$\overrightarrow{AD}$•$\overrightarrow{BC}$≤0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(2016)=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.[普通中學(xué)做]如圖所示,以O(shè)x為始邊作角α與β(0<β<α<π),它們的終邊分別與單位圓相交于點(diǎn)P、Q,已知點(diǎn)Q的橫坐標(biāo)為$\frac{4}{5}$.
(1)求$\frac{1+sin2β}{1+si{n}^{2}β}$的值;
(2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{1}{2}$,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}^{2}+3{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(Ⅰ)求證:$\frac{2n+1}{3}$≤an≤n;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n≥5時,求證:Sn≥$\frac{1}{3}$n2+$\frac{4}{5}$n-$\frac{8}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.以(2$\sqrt{3}$,0)為圓心,截直線y=$\sqrt{3}$x得弦長為8的圓的方程是(x-2$\sqrt{3}$)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.向量|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,($\overrightarrow{a}$+2$\overrightarrow$)⊥($\overrightarrow$-2$\overrightarrow{a}$),則向量$\overrightarrow{a}$與$\overrightarrow$的數(shù)量積等于( 。
A.-1B.-$\frac{10}{3}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知線性回歸方程為y=1.5x-15,則下列說法正確的是( 。
A.$\overline{y}$=1.5$\overline{x}$-15B.15是回歸系數(shù)a
C.1.5是回歸系數(shù)aD.當(dāng)x=10時,y的準(zhǔn)確值為0

查看答案和解析>>

同步練習(xí)冊答案