【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.

(1)若日均收看該體育節(jié)目時間在內(nèi)的觀眾中恰有兩名女性,現(xiàn)日均收看時間在內(nèi)的觀眾中抽取兩名進(jìn)行調(diào)查,求這兩名觀眾恰好一男一女的概率;

(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯誤概率不超過的前提下認(rèn)為體育迷與性別有關(guān)系?

非體育迷

體育迷

合計(jì)

合計(jì)

附表及公式:,

k0

2.706

3.841

6.635

【答案】(1) (2)列聯(lián)表見解析,不能在犯錯概率不超過的前提下認(rèn)為體育迷與性別有關(guān)系.

【解析】

(1)先根據(jù)直方圖求出日均收看時間在內(nèi)的觀眾有5名,其中3男2女,再根據(jù)古典概型的概率公式可求得;

(2)求得觀測值后,根據(jù)臨界值表可得.

(1)由圖可得,日均收看時間在內(nèi)的觀眾有名,

則其中有名男性,名女性,

名男性為,,名女性為.

從中抽取兩名觀眾的情況有,,,,,,,10種.

其中恰好一男一女的情況有種,

所以所求概率

(2)由直方圖可知,100名觀眾中體育迷觀眾有名,

所以男體育迷有25-10=15,男非體育迷有45-15=30名.

所以列聯(lián)表如下:

非體育迷

體育迷

合計(jì)

合計(jì)

故不能在犯錯概率不超過的前提下認(rèn)為體育迷與性別有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖象在點(diǎn)處的切線與軸垂直,求的極值;

(Ⅱ)討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2pxp0)的焦點(diǎn)為F,直線y=kx+1)與C相切于點(diǎn)A,|AF|=2

)求拋物線C的方程;

)設(shè)直線lCMN兩點(diǎn),TMN的中點(diǎn),若|MN|=8,求點(diǎn)Ty軸距離的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某音樂院校舉行“校園之星”評選活動,評委由本校全體學(xué)生組成,對兩位選手,隨機(jī)調(diào)查了20個學(xué)生的評分,得到下面的莖葉圖:

所得分?jǐn)?shù)

低于60分

60分到79分

不低于80分

分流方向

淘汰出局

復(fù)賽待選

直接晉級

(1)通過莖葉圖比較兩位選手所得分?jǐn)?shù)的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);

(2)舉辦方將會根據(jù)評分結(jié)果對選手進(jìn)行三向分流,根據(jù)所得分?jǐn)?shù),估計(jì)兩位選手中哪位選手直接晉級的概率更大,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)的直線lE交于A,B兩點(diǎn).當(dāng)l過點(diǎn)F時,直線l的斜率為,當(dāng)l的斜率不存在時,.

1)求橢圓E的方程.

2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計(jì)劃從3個亞洲國家A1,A2A33個歐洲國家B1,B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在以直角坐標(biāo)原點(diǎn)為極點(diǎn),的非負(fù)半軸為極軸的極坐標(biāo)系下,曲線的方程是,將向上平移1個單位得到曲線

)求曲線的極坐標(biāo)方程;

)若曲線的切線交曲線于不同兩點(diǎn),切點(diǎn)為.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.

1)求點(diǎn),的極坐標(biāo);

2)若點(diǎn)為曲線上的動點(diǎn),為線段的中點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊答案