如圖4,在正三棱柱中,
D是的中點(diǎn),點(diǎn)E在上,且。
(I) 證明平面平面
(II) 求直線和平面所成角的正弦值。
(Ⅰ)略(Ⅱ)
(I) 如圖所示,由正三棱柱的性質(zhì)知平面
又DE平面ABC,所以DEAA.
而DEAE。AAAE=A 所以DE平面AC CA,又DE平面ADE,故平面ADE平面AC CA。
(2)解法1 如圖所示,設(shè)F使AB的中點(diǎn),連接DF、DC、CF,由正三棱柱ABC- ABC的性質(zhì)及D是AB的中點(diǎn)知ABCD, ABDF
又CDDF=D,所以AB平面CDF,
而AB∥AB,所以
AB平面CDF,又AB平面ABC,故
平面AB C平面CDF。
過(guò)點(diǎn)D做DH垂直CF于點(diǎn)H,則DH平面AB C。
連接AH,則HAD是AD和平面ABC所成的角。
由已知AB=A A,不妨設(shè)A A=,則AB=2,DF=,D C=,
CF=,AD==,DH==—,
所以 sinHAD==。
即直線AD和平面AB C所成角的正弦值為。
解法2 如圖所示,設(shè)O使AC的中點(diǎn),以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系,不妨設(shè)
A A=,則AB=2,相關(guān)各點(diǎn)的坐標(biāo)分別是
A(0,-1,0), B(,0,0), C(0,1,), D(,-,)。
易知=(,1,0), =(0,2,), =(,-,)
設(shè)平面ABC的法向量為n=(x,y,z),則有
解得x=-y, z=-,
故可取n=(1,-,)。
所以,(n·)===。
由此即知,直線AD和平面AB C所成角的正弦值為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷理)(本小題滿分12分)
如圖4,在正三棱柱中,
D是的中點(diǎn),點(diǎn)E在上,且。
(I) 證明平面平面
(II) 求直線和平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
如圖3,在正三棱柱中,AB=4,,點(diǎn)D是BC的中點(diǎn),
點(diǎn)E在AC上,且DEE。
(Ⅰ)證明:平面平面;
(Ⅱ)求直線AD和平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷理)(本小題滿分12分)
如圖4,在正三棱柱中,
D是的中點(diǎn),點(diǎn)E在上,且。
證明平面平面
求直線和平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷理)(本小題滿分12分)
如圖4,在正三棱柱中,
D是的中點(diǎn),點(diǎn)E在上,且。
證明平面平面
求直線和平面所成角的正弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com