分析 (1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線l的方程;
(2)利用傾斜角求出直線的斜率,然后求出直線的方程,利用點到直線的距離,半徑,半弦長的關(guān)系求弦長AB.
解答 解:(1)圓C:x2+(y-1)2=9的圓心為C(0,1),直線過點P、C,
所以直線l的斜率為k=$\frac{2-1}{\sqrt{3}-0}$=$\frac{\sqrt{3}}{3}$,
直線l的方程為y=$\frac{\sqrt{3}}{3}$x+1,即$\sqrt{3}$x-3y-3=0;
(2)當直線l的傾斜角為$\frac{π}{3}$時,斜率為k=tan$\frac{π}{3}$=$\sqrt{3}$,
直線l的方程為y-2=$\sqrt{3}$(x-$\sqrt{3}$),即$\sqrt{3}$x-y-1=0;
又圓心C(0,1)到直線l的距離為d=$\frac{|\sqrt{3}×0-1×1-1|}{\sqrt{{(\sqrt{3})}^{2}{+(-1)}^{2}}}$=1,圓的半徑為r=3,
所以弦AB的長為|AB|=2$\sqrt{{r}^{2}{-d}^{2}}$=2×$\sqrt{{3}^{2}{-1}^{2}}$=4$\sqrt{2}$.
點評 本題考查了直線與圓的位置關(guān)系與應用問題,也考查了直線的斜率與點到直線的距離的計算問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
支持推遲退休 | 不支持推遲退休 | 合計 | |
年齡不大于45歲 | 20 | 60 | 80 |
年齡大于45歲 | 10 | 10 | 20 |
合計 | 30 | 70 | 100 |
P(K2>k) | 0.100 | 0.050 | 0.025 | 0.010 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com