【題目】臺風(fēng)“山竹”導(dǎo)致海南省局部地方海嘯,使當(dāng)?shù)氐淖詠硭艿搅宋廴,某部門對水質(zhì)監(jiān)測后,決定往水中投放一種藥劑來凈化水質(zhì),已知每投放質(zhì)量為的藥劑后,經(jīng)過天該藥劑在水中釋放的濃度(毫克/升)滿足,其中,當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)時稱為有效凈化,當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為,試問自來水達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為,為了使在7天(從投放藥劑算起包括第7天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測部門對某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:
(1)估計事件“該市一天空氣中濃度不超過,且濃度不超過”的概率;
(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個質(zhì)點(diǎn)在第一象限運(yùn)動,第一秒鐘內(nèi)它由原點(diǎn)移動到,而后它接著按圖所示在與軸、軸平行的方向運(yùn)動,且每秒移動一個單位長度,那么2018秒后,這個質(zhì)點(diǎn)所處的位置的坐標(biāo)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設(shè)計的,那么在兩個判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,對角線AC、BD相交于點(diǎn)O,動點(diǎn)P滿足,若,其中m、nR,則的最大值是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為其定義域上的“類函數(shù)”,求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上的最大值是,最小值是,則( )
A.與有關(guān),且與有關(guān)B.與有關(guān),但與無關(guān)
C.與無關(guān),且與無關(guān)D.與無關(guān),但與有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>,求的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個零點(diǎn).若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.
(1)證明:平面平面;
(2)若,為線段的中點(diǎn),求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com