【題目】已知函數(shù).

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求證:直線是曲線的切線;

(Ⅲ)寫出的一個值,使得函數(shù)有三個不同零點(只需直接寫出數(shù)值)

【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為; (2)見解析;(3)見解析.

【解析】

(Ⅰ)當時,對函數(shù)求導(dǎo),通過判斷導(dǎo)數(shù)與0的關(guān)系即可得單調(diào)區(qū)間;(Ⅱ)根據(jù)導(dǎo)數(shù)的幾何意義可令,解得,而,通過直線不經(jīng)過,即可得最后結(jié)果;(Ⅲ)取的值為

(Ⅰ)函數(shù)的定義域為

時,

所以

,得

當x變化時,,的變化情況如下表:

x

-1

+

0

-

0

+

極大值

極小值

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(Ⅱ)因為

,解得

因為,直線不經(jīng)過

,

所以曲線在點處的切線為

化簡得到

所以無論a為何值,直線都是曲線在點處的切線

(Ⅲ)取a的值為-2.

這里a的值不唯一,只要取a的值小于-1即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓錐的頂點為P,母線長為4,底面圓心為O,半徑為2.

(1)求這個圓錐的體積;

(2)設(shè)OA,OB是底面半徑,且∠AOB=90°,M為線段AB的中點,求異面直線PM與OB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是正四面體的棱上的點,且,若,,則四面體的體積是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

)若函數(shù)在區(qū)間上的最大值為,最小值為,令,求的解析式及其最小值(注:為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當橋上的車流密度達到/千米時,造成堵塞,此時車流速度為;當車流密度不超過/千米時,車流速度為千米/小時,研究表明:當時,車流速度是車流密度的一次函數(shù).

1)當時,求函數(shù)的表達式;

2)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

Ⅰ)若的一個極值點,求函數(shù)表達式, 并求出的單調(diào)區(qū)間;

Ⅱ)若,證明當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數(shù)學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從含有兩件正品a1,a2和一件次品b13件產(chǎn)品中每次任取1件,

每次取出后不放回,連續(xù)取兩次.

1)求取出的兩件產(chǎn)品中恰有一件次品的概率;

2)如果將每次取出后不放回這一條件換成每次取出后放回,則取出的兩件產(chǎn)品中恰有一件次品的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱錐中,,,E為PC的中點,,

(1)求證:

(2)若與面ABCD所成角為,P在面ABCD射影為O,問是否在BC上存在一點F,使面與面PAB所成的角為,若存在,試求點F的位置,不存在,請說明理由.

查看答案和解析>>

同步練習冊答案