【題目】已知分別是正四面體的棱上的點(diǎn),且,若,則四面體的體積是_________.

【答案】

【解析】

由題意畫出圖形,設(shè)PD=x,PE=y,PF=z,由余弦定理得到關(guān)于x,y,z的方程組,求解可得x,y,z的值,然后分別求出三角形PDE的面積及F到平面PDE的高,代入棱錐體積公式得答案.

如圖,

設(shè)PD=x,PE=y,PF=z,則

∵DE=2,DF=EF=

由余弦定理得,x2+y2﹣2xy=4①

y2+z2﹣2yz=7②

z2+x2﹣2zx=7③

③﹣②得,x2﹣y2=xz﹣yz,

即(x+y)(x﹣y)=z(x﹣y),

∵x≠y,則z=x+y,

代入,得x2+y2+xy=7,

又x2+y2﹣xy=4,不妨設(shè)x>y,

解得,x=,y=,z=

=

F到平面PDE的距離d=

∴VP﹣DEF=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為菱形,△PAD為正三角形,且E為AD的中點(diǎn),BE⊥平面PAD.

(Ⅰ)求證:平面PBC⊥平面PEB;

(Ⅱ)求平面PEB與平面PDC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為兩個(gè)不同的平面,為兩條不同的直線,下列命題中正確的是( )

①若,,則; ②若,則

③若,,則 ④若,,則.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的一段圖象如圖所示.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,可得到函數(shù)的圖象,且圖象關(guān)于原點(diǎn)對(duì)稱.

1)求的解析式并求其單調(diào)遞增區(qū)間;

2)求實(shí)數(shù)的最小值,并寫出此時(shí)的表達(dá)式;

3)在(2)的條件下,設(shè),關(guān)于的函數(shù)在區(qū)間上的最小值為-2,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)空間幾何體的正視圖和俯視圖,則它的側(cè)視圖為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|x-a|-1,(a為常數(shù)).

1)若fx)在x[02]上的最大值為3,求實(shí)數(shù)a的值;

2)已知gx=xfx+a-m,若存在實(shí)數(shù)a∈(-12],使得函數(shù)gx)有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求證:直線是曲線的切線;

(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案