【題目】6本不同的書,在下列不同的條件下,各有多少種不同的分法?

1)分給甲乙丙三人,其中一個人1本,一個人2本,一個人3本;

2)分成三組,一組4本,另外兩組各1本;

3)甲得1本,乙得1本,丙得4本.

【答案】1種;(2種;(3種.

【解析】

1)先將6本不同的書分成3組,書本數(shù)為1本,2本,3本,再將3組分配給3人;

2)分成3組,只需從6本中選4本一組,其余2本為2組;

3)分步處理,先從從6本中選4本給丙,其余2本分給甲乙各一本.

1)先將6本不同的書分成1本,2本,3本共3組,有種,

再將3組分配給3人有種,故共有種;

2)只需從6本中選4本一組,其余2本為2組,即種;

3)分步處理,先從從6本中選4本給丙,其余2本分給甲乙各一本,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】圓周上分布著2014個點,將其任意染成紅、黃兩色.若從某一點開始,依任一方向繞圓周運動到任一位置,所經(jīng)過的點(含自身)紅點個數(shù)恒大于黃點個數(shù),則稱該點為“優(yōu)點”.為確保圓周上至少有一個優(yōu)點,求圓周上黃點個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個極值點,,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是兩個不同的平面,則的必要不充分條件是( )

A.內(nèi)存在一條直線垂直于內(nèi)的兩條相交直線

B.平行于的一個平面與垂直

C.內(nèi)存在一條直線垂直于內(nèi)的無數(shù)條直線

D.垂直于的一條直線與平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線.

1)點是該拋物線上任一點,求證:過點的拋物線的切線方程為

2)過點作該拋物線的兩條切線,切點分別為,,設的面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則以下結論正確的是(

A.函數(shù)的單調(diào)減區(qū)間是

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),且,若

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動點Px,y)到兩條坐標軸的距離之和等于它到點(11)的距離,記點P的軌跡為曲線W,給出下列四個結論:

曲線W關于原點對稱;

曲線W關于直線yx對稱;

曲線Wx軸非負半軸,y軸非負半軸圍成的封閉圖形的面積小于;

曲線W上的點到原點距離的最小值為

其中,所有正確結論的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝公司,為確定明年類服裝的廣告費用,對往年廣告費(單位:千元)對年銷售量(單位:件)和年利潤(單位:千元)的影響.2011-2018廣告費和年銷售量數(shù)據(jù)進行了處理,分析出以下散點圖和統(tǒng)計量:


45

580

2025

297

1600

960

1440

表中

1)由散點圖可知,更適合作為年銷售量關于年廣告費的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)(1)的判斷結果和表中數(shù)據(jù)求關于的回歸方程.

3)已知該類服裝年利率的關系為.由(2)回答以下問題:年廣告費用等于60時,年銷售量及年利潤的預報值為多少?年廣告費用為何值時,年利率的預報值最?

對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)的圖象上所有點的橫坐標縮小到原來的倍(縱坐標不變),再把得到圖象上所有點向右平移個單位長度,得到函數(shù)的圖象.則下列命題正確的是(

A.函數(shù)在區(qū)間,上單調(diào)遞減

B.函數(shù)在區(qū)間上單調(diào)遞增

C.函數(shù)的圖象關于直線,對稱

D.函數(shù)的圖象關于點,對稱

查看答案和解析>>

同步練習冊答案