18.已知各項不為0的等差數(shù)列{an}滿足a4-2a${\;}_{7}^{2}$+3a8=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b6b7b8等于( 。
A.1B.2C.4D.8

分析 利用等差數(shù)列與等比數(shù)列的通項公式及其性質(zhì)即可得出.

解答 解:∵a4-2a${\;}_{7}^{2}$+3a8=0,∴2a${\;}_{7}^{2}$=3a8+a4=2a8+a5+a7=a5+a7+a7+a9,化為:2a${\;}_{7}^{2}$=4a7,a7≠0,
∴a7=2=b7
∴b6b7b8=$_{7}×(_{7})^{2}$=23=8.
故選:D.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知F1,F(xiàn)2為橢圓C:$\frac{x^2}{4}+{y^2}$=1的左、右焦點,點P在C上,|PF1|=3|PF2|,則cos∠F1PF2等于( 。
A.$\frac{3}{4}$B.$-\frac{1}{3}$C.$-\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖是一個算法流程圖,則輸出S的值是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z滿足z=(1+i)(1-2i),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其長軸長為4且離心率為$\frac{\sqrt{3}}{2}$,在橢圓C1上任取一點P,過點P作圓C2:x2+(y+3)2=2的兩條切線PM,PN,切點分別為M,N,則$\overrightarrow{{C}_{2}M}$•$\overrightarrow{{C}_{2}N}$的最小值為( 。
A.-2B.-$\frac{3}{2}$C.-$\frac{18}{13}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.從2016年1月1日起,廣東、湖北等18個保監(jiān)局所轄地區(qū)將納入商業(yè)車險改革試點范圍,其中最大的變化是上一年的出險次數(shù)決定了下一年的保費倍率,具體關(guān)系如表:
上一年的
出險次數(shù)
012345次以上(含5次)
下一年
保費倍率
85%100%125%150%175%200%
連續(xù)兩年沒有出險打7折,連續(xù)三年沒有出險打6折
有評估機構(gòu)從以往購買了車險的車輛中隨機抽取1000輛調(diào)查,得到一年中出險次數(shù)的頻數(shù)分布如下(并用相應(yīng)頻率估計車輛每年出險次數(shù)的概率):
一年中出險次數(shù)012345次以上(含5次)
頻數(shù)5003801001541
(1)求某車在兩年中出險次數(shù)不超過2次的概率;
(2)經(jīng)驗表明新車商業(yè)車險保費與購車價格有較強的線性相關(guān)關(guān)系,估計其回歸直線方程為:$\widehaty$=120x+1600.(其中x(萬元)表示購車價格,y(元)表示商業(yè)車險保費).李先生2016 年1月購買一輛價值20萬元的新車.根據(jù)以上信息,試估計該車輛在2017 年1月續(xù)保時應(yīng)繳交的保費,并分析車險新政是否總體上減輕了車主負擔.(假設(shè)車輛下一年與上一年都購買相同的商業(yè)車險產(chǎn)品進行續(xù)保)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=cos(x+$\frac{2π}{7}$)+2sin$\frac{π}{7}$sin(x+$\frac{π}{7}$),把函數(shù)f(x)的圖象向右平移$\frac{π}{3}$,再把圖象上所有點的橫坐標擴大到原來的2倍,得到函數(shù)g(x),則函數(shù)g(x)的一條對稱軸為( 。
A.x=$\frac{π}{3}$B.x=$\frac{π}{4}$C.x=$\frac{2π}{3}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)x,y滿足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,則log2(x+y)的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{\sqrt{x}}{{e}^{x}-1}$的定義域為( 。
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案