如圖所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成角的正弦值.
(1)證明見解析;(2).
解析試題分析:(1)根據(jù)直棱柱性質(zhì),得平面,從而,結(jié)合,證出平面,從而得到;
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/b/l2jzd1.png" style="vertical-align:middle;" />,所以直線與平面夾角即直線與平面夾角
建立空間直角坐標(biāo)系,設(shè)為原點(diǎn),為軸正半軸,為軸正半軸,設(shè)平面的一個法向量,通過計(jì)算求出,與的夾角的余弦值的絕對值就為直線與平面夾角的正弦值.
試題解析:(1) 是直棱柱
又
又,
(2)
直線與平面夾角即直線與平面夾角
建立空間直角坐標(biāo)系,設(shè)為原點(diǎn),為軸正半軸,為軸正半軸,
設(shè),,,,,則,,
,即
,
設(shè)平面的一個法向量
,,
直線與平面夾角的正弦值.
考點(diǎn):1.線面垂直的判定定理及性質(zhì)定理;2.向量法求空間角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且
(I)求證:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點(diǎn),點(diǎn)E在棱BB1上運(yùn)動.
(Ⅰ)證明:AD⊥C1E;
(Ⅱ)當(dāng)異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,D、E分別為、AD的中點(diǎn),F(xiàn)為上的點(diǎn),且
(I)證明:EF∥平面ABC;
(Ⅱ)若,,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在四棱錐中,底面是矩形,平面,、分別是、的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若與平面所成角為,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長均相等.D,E,F分別為棱AB,BC,A1C1的中點(diǎn).
(Ⅰ)證明EF//平面A1CD;
(Ⅱ)證明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直線BC與平面A1CD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com