18.復(fù)數(shù)${(\frac{1-i}{{\sqrt{2}}})^2}=a+bi(a,b∈R,i$是虛數(shù)單位),則a的值為( 。
A.0B.1C.2D.-1

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)相等的條件列式求得a值.

解答 解:∵$(\frac{1-i}{\sqrt{2}})^{2}=\frac{-2i}{2}=-i=a+bi$,
∴a=0.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式ax2-3x+2≤0的解集為{x|1≤x≤b}.
(1)求實數(shù)a,b的值;
(2)解關(guān)于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分別為AB,BC的中點,F(xiàn)為BB1上一點,且$\frac{BF}{F{B}_{1}}$=$\frac{2}{7}$.
(1)求證:平面CDF⊥平面A1C1E;
(2)求二面角C1-CD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足(3+4i)z=25,則z對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知數(shù)列{an}的各項均為正數(shù),${b_n}=n{({1+\frac{1}{n}})^n}•{a_n}({n∈{N_+}})$,計算$\frac{b_1}{a_1}$,$\frac{{{b_1}{b_2}}}{{{a_1}{a_2}}}$,$\frac{{{b_1}{b_2}{b_3}}}{{{a_1}{a_2}{a_3}}}$,由此推測計算$\frac{{{b_1}{b_2}…{b_n}}}{{{a_1}{a_2}…{a_n}}}$的公式,并給出證明.
(2)求證:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…$\frac{1}{3n}$>$\frac{5}{6}$(n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為$\frac{5}{12}$,取出黑球的概率為$\frac{1}{3}$,取出白球的概率為$\frac{1}{6}$,取出綠球的概率為$\frac{1}{12}$.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x∈R,a=x2-1,b=2x+2.
(1)求a+b的取值范圍;
(2)用反證法證明:a,b中至少有一個大于等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=ln(1+x)-x+\frac{k}{2}{x^2}(k≥0)$.
(Ⅰ)當(dāng)k=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當(dāng)k≠1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)k=0時,若x>-1,證明:$ln(x+1)≥1-\frac{1}{x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正方形ABCD的邊長為2,向正方形ABCD內(nèi)投擲200個點,有30個落入圖形M中,則圖形M的面積估計為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案