19.將長方體截去一個四棱錐,得到的幾何體如圖所示,則該幾何體的側(cè)視圖為( 。
A.B.C.D.

分析 根據(jù)三視圖的特點,知道側(cè)視圖從圖形的左邊向右邊看,看到一個正方形的面,在面上有一條對角線,對角線是由左下角到右上角的線,得到結(jié)果.

解答 解:側(cè)視圖從圖形的左邊向右邊看,
看到一個正方形的面,在面上有一條對角線,對角線是由左下角到右上角的線,
故選D.

點評 本題考查空間圖形的三視圖,考查側(cè)視圖的做法,本題是一個基礎(chǔ)題,考查的內(nèi)容比較簡單,可能出現(xiàn)的錯誤是對角線的方向可能出錯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知方程a-x2=-2lnx在區(qū)間[$\frac{1}{e}$,e]上有解(其中e為自然對數(shù)的底數(shù)),則實數(shù)a的取值范圍是( 。
A.[1,$\frac{1}{{e}^{2}}$+2]B.[1,e2-2]C.[$\frac{1}{{e}^{2}}$+2,e2-2]D.[e2-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a<b<0,則下列不等式中錯誤的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{1}{a-b}$>$\frac{1}$C.|a|>|b|D.a2>ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=$\frac{si{n}^{2}x}{3}$+$\frac{3}{si{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2B-cos2C=${sin^2}A-\sqrt{3}sinAsinB$.
(1)求角C;
(2)若$∠A=\frac{π}{6}$,△ABC的面積為$4\sqrt{3}$,M為AB的中點,求CM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.方程ax2+bx=0(a≠0),必有一根為0;ax2+c=0(a≠0)中,a、c異號,則方程的根為±$\sqrt{-\frac{c}{a}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{ln|x|}{x}$的大致圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象的兩條相鄰對稱軸之間的距離為$\frac{π}{2}$,且圖象上一個最低點為M($\frac{2}{3}$π,-1).
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[$\frac{π}{8}$,$\frac{π}{2}$]時,求函數(shù)f(x)的值域;
(3)若方程f(x)=$\frac{2}{3}$在x∈[0,$\frac{π}{3}$]上有兩個不相等的實數(shù)根x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.近年來,食品安全越來越被廣大民眾所關(guān)注,有機蔬菜因其無污染、富營養(yǎng)和高質(zhì)量等品質(zhì)而受到大眾喜愛.為了解某地區(qū)某種有機蔬菜的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和年利潤z的影響,對近五年該有機蔬菜的年產(chǎn)量和價格統(tǒng)計如表:
x31245
y5.56.563.72.3
(1)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)假設(shè)該有機蔬菜的成本為每噸2千元,并且可以全部賣出,預(yù)測年產(chǎn)量為多少噸時,年利潤z取到最大值?(結(jié)果保留兩位小數(shù))
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

同步練習(xí)冊答案