直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),為直線與曲線的公共點. 以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求點的極坐標(biāo);
(Ⅱ)將曲線上所有點的縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變)后得到曲線,過點作直線,若直線被曲線截得的線段長為,求直線的極坐標(biāo)方程.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)把曲線的參數(shù)方程化為的普通方程,將代入整理為關(guān)于的二次方程,解出,易得點的極坐標(biāo);(Ⅱ)通過坐標(biāo)變換得出的普通方程,對直線的斜率分類討論,利用點到直線的距離公式求得,求出直線的普通方程,易得直線的極坐標(biāo)方程.
試題解析:(Ⅰ)曲線的普通方程為,將代人上式整理得,解得.故點的坐標(biāo)為,其極坐標(biāo)為.   5分
(Ⅱ)依題知,坐標(biāo)變換式為,
的方程為:,即.
當(dāng)直線的斜率不存在時,其方程為,顯然成立.
當(dāng)直線的斜率存在時,設(shè)其方程為,即,
則由已知,圓心到直線的距離為,故
解得.此時,直線的方程為.
故直線的極坐標(biāo)方程為:.        10分
考點:直線、圓、橢圓的普通方程與參數(shù)方程的轉(zhuǎn)化,直線的極坐標(biāo)方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)過原點的直線與圓的一個交點為,點為線段的中點。
(1)求圓的極坐標(biāo)方程;
(2)求點軌跡的極坐標(biāo)方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,O為極點,半徑為2的圓C的圓心的極坐標(biāo)為
(1)求圓C的極坐標(biāo)方程;
(2)在以極點O為原點,以極軸為x軸正半軸建立的直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),直線與圓C相交于A,B兩點,已知定點,求|MA|·|MB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線是過點,方向向量為的直線,圓方程
(1)求直線的參數(shù)方程
(2)設(shè)直線與圓相交于兩點,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為( t為參數(shù),0≤).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(Ⅱ)若直線經(jīng)過點(1,0),求直線被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為,M,N分別為C與x軸,y軸的交點.
(Ⅰ)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(Ⅱ)設(shè)MN的中點為P,求直線OP的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點為原點,極軸方向為正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).
(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;
(2) 設(shè)點為曲線上的動點,過點作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點的直線的參數(shù)方程為:,(t為參數(shù)),直線與曲線分別交于兩點.
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

同步練習(xí)冊答案