根據(jù)表格中的數(shù)據(jù),可以斷定方程ex-(2x+4)=0(e≈2.72)的一個(gè)根所在的區(qū)間是( 。
x-10123
ex0.3712.707.2919.68
2x+4246810
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令g(x)=ex-(2x+4),則g(-1)<0,g(0)<0,g(1)<0,g(2)<0,g(3)>0,由零點(diǎn)存在定理,即可判斷.
解答: 解:令g(x)=ex-(2x+4),
則g(-1)<0,g(0)<0,g(1)<0,g(2)<0,g(3)>0,
即有g(shù)(2)g(3)<0,由零點(diǎn)存在定理,
可得在區(qū)間(2,3)上存在零點(diǎn),
故選:D.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn)的判斷,考查函數(shù)的零點(diǎn)存在定理的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,證明:sinA+sinB+sinC≤
3
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x3+lgx=18的一個(gè)零點(diǎn)為
 
.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知焦點(diǎn)在y軸,頂點(diǎn)在原點(diǎn)的拋物線C1經(jīng)過(guò)點(diǎn)P(2,2),以C1上一點(diǎn)C2為圓心的圓過(guò)定點(diǎn)A(0,1),記M、N為圓C2與x軸的兩個(gè)交點(diǎn).
(1)求拋物線C1的方程;
(2)當(dāng)圓心C2在拋物線上運(yùn)動(dòng)時(shí),試判斷|MN|是否為一定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖直三棱柱ABC-A1B1C1,CA=CB,E、F、M分別是棱CC1、AB、BB1中點(diǎn).
(1)求證:平面AEB1∥平面CFM;   
(2)求證:CF⊥BA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

底面半徑為2,高為4
2
的圓錐有一個(gè)內(nèi)接的正四棱柱(底面是正方形,側(cè)棱與底面垂直的四棱柱).
(1)設(shè)正四棱柱的底面邊長(zhǎng)為x,試將棱柱的高h(yuǎn)表示成x的函數(shù);
(2)當(dāng)x取何值時(shí),此正四棱柱的表面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件為
3x+4y-12≤0
x+2y-4≥0
y≤2
,若目標(biāo)函數(shù)z=ax+y(a>0)僅在點(diǎn)(4,0)處取得最大值,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,a3=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Sk=110,求k的值;
(3)設(shè)數(shù)列{
1
Sn
}的前n項(xiàng)和為Tn,求T2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(3,3,1),B(1,0,5),求:
(1)線段AB的中點(diǎn)坐標(biāo)和線段AB長(zhǎng)度;
(2)到A,B兩點(diǎn)距離相等的點(diǎn)P(x,y,z)的坐標(biāo)x,y,z滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案