分析 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=2x-3y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最小值即可.
解答 解:先根據(jù)約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-3≥0}\\{2x+y-6≤0}\end{array}\right.$,畫出可行域,
當直線z=3x-2y過點A時,目標函數(shù)取得最大值,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-3=0}\end{array}\right.$可得A($\frac{1}{3}$,$\frac{4}{3}$)時,
3x-2y最小是:$3×\frac{1}{3}-2×\frac{4}{3}$=-$\frac{5}{3}$,
故答案為:-$\frac{5}{3}$.
點評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}-\frac{y^2}{9}$=1(x>0) | B. | $\frac{x^2}{16}-\frac{y^2}{9}$=1 | C. | $\frac{x^2}{16}-\frac{y^2}{9}$=1(x<0) | D. | $\frac{x^2}{25}+\frac{y^2}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0} | B. | {x|x≥2} | C. | {x|x<0或x>2} | D. | {x|x≤0或x≥2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x<1} | B. | {x|0≤x<2} | C. | {x|0≤x≤1} | D. | {x|0≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com