分析 (1)由a2,a5是方程x2-12x+27=0的兩根,且數(shù)列{an}的公差d>0,可得a2=3,a5=9,公差$d=\frac{{{a_5}-{a_2}}}{5-2}=2$,即可得出an.利用數(shù)列遞推關(guān)系與等比數(shù)列的通項公式可得bn.
(2)由(1)知 ${c_n}={a_n}{b_n}=(2n-1)•{3^n}$,利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 解:(1)∵a2,a5是方程x2-12x+27=0的兩根,且數(shù)列{an}的公差d>0,
∴a2=3,a5=9,公差$d=\frac{{{a_5}-{a_2}}}{5-2}=2$
∴an=a2+(n-2)d=2n-1…(3分)
又當n=1時,有${b_1}={S_1}=\frac{3}{2}({b_1}-1)$,∴b1=3
當$n≥2時,有{b_n}={S_n}-{S_{n-1}}=\frac{3}{2}({b_n}-{b_{n-1}})$,∴bn=3bn-1
又b1=3≠0∴數(shù)列{bn}是首項b1=3,公比q=3的等比數(shù)列,
∴${b_n}={b_1}{q^{n-1}}={3^n}$…(6分)
(2)由(1)知 ${c_n}={a_n}{b_n}=(2n-1)•{3^n}$…(7分)
∵${T_n}=3+3•{3^2}+5•{3^3}+…+(2n-3)•{3^{n-1}}+(2n-1)•{3^n}$(1)∴$3{T_n}={3^2}+3•{3^3}+…+(2n-5)•{3^{n-1}}+(2n-3)•{3^n}+(2n-1)•{3^{n+1}}$(2)…(9分)
(1)-(2):∴$-2{T_n}=3+2({3^2}+{3^3}+…+{3^n})-(2n-1)•{3^{n+1}}$=$3-(2n-1)•{3^{n+1}}+2•\frac{{{3^2}(1-{3^{n-1}})}}{1-3}$
=3-(2n-1)•3n+1-(32-3n+1)=-6+(2-2n)•3n+1,
∴${T_n}=3+(n-1)•{3^{n+1}}$.(12分)
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式、數(shù)列遞推關(guān)系、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “?x∈R,x2>0”的否定是“?x0∈R,x02≤0” | |
B. | “?x0∈R,x02<0”的否定是“?x∈R,x2<0” | |
C. | “?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1” | |
D. | “?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最小值4 | B. | 最大值4 | C. | 最小值2 | D. | 最大值2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個單位長度 | B. | 向右平移$\frac{π}{3}$個單位長度 | ||
C. | 向右平移$\frac{π}{6}$個單位長度 | D. | 向左平移$\frac{π}{6}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com