分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)通過討論a的范圍,結(jié)合函數(shù)的得到以及零點(diǎn)的個(gè)數(shù)求出a的范圍即可.
解答 解:(1)f(x)的定義域?yàn)椋?,+∞),f′(x)=$\frac{2(x-1)(x-a)}{x}$,
令f′(x)=0,可得x=1或x=a,下面分三種情況.
①當(dāng)a≤0時(shí),可得x-a>0,由f′(x)>0,得x>1,由f′(x)<0,得0<x<1,
此時(shí)f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1.
②當(dāng)0<a<1時(shí),由f′(x)>0,得0<x<a或x>1,由f′(x)<0,得a<x<1,
此時(shí)f(x)的單調(diào)遞增區(qū)間為(0,a),(1,+∞),單調(diào)遞減區(qū)間為(a,1).
③當(dāng)a=1時(shí),f′(x)=$\frac{{2(x-1)}^{2}}{x}$≥0,f(x)在區(qū)間(0,+∞)上單調(diào)遞增.
(2)由(1)得,當(dāng)a<0時(shí),f(x)在x=1處取得最小值-2a-1,、
且f(x)在區(qū)間[$\frac{1}{e}$,e2]內(nèi)先減后增,
又f(e2)=4a-2(a+1)e2+e4=-(2e2-4)a+e4-2e2>0,
f($\frac{1}{e}$)=-2a-$\frac{2(a+1)}{e}$+$\frac{1}{{e}^{2}}$,要使得f(x)在區(qū)間[$\frac{1}{e}$,e2]上有兩個(gè)零點(diǎn),
必須有f($\frac{1}{e}$)≥0且-2a-1<0,由此可得-$\frac{1}{2}$<a≤-$\frac{2e-1}{2e(e+1)}$,
當(dāng)a=0時(shí),f(x)=x2-2x,顯然f(x)在區(qū)間[$\frac{1}{e}$,e2]上不存在兩個(gè)零點(diǎn).
當(dāng)0<a≤$\frac{1}{e}$時(shí),由(1)得f(x)在區(qū)間[$\frac{1}{e}$,e2]內(nèi)先減后增,
又f($\frac{1}{e}$)=-2a-$\frac{2a}{e}$-($\frac{2}{e}$-$\frac{1}{{e}^{2}}$)<0,f(e2)=-(2e2-4)a+e4-2e2>-(2e2-4)+e4-2e2>0,
故此時(shí)f(x)在區(qū)間[$\frac{1}{e}$,e2]上不存在兩個(gè)零點(diǎn).
當(dāng)$\frac{1}{e}$<a<1時(shí),由(1)得f(x)在區(qū)間[$\frac{1}{e}$,e2]內(nèi)先增,先減,后增.
又f(a)=2alna-2(a+1)a+a2=2alna-(2a+a2)<0,f(e2)>-(2e2-4)+e4-2e2>0,
故此時(shí)f(x)在區(qū)間[$\frac{1}{e}$,e2]上不存在兩個(gè)零點(diǎn).
當(dāng)a=1時(shí),由(1)得f(x)在區(qū)間(0,+∞)上單調(diào)遞增,
f(x)在區(qū)間[$\frac{1}{e}$,e2]上不存在兩個(gè)零點(diǎn).
綜上,a的取值范圍是(-$\frac{1}{2}$,$\frac{2e-1}{2e(e+1)}$].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{28}{31}$ | B. | $\frac{19}{21}$ | C. | $\frac{22}{31}$ | D. | $\frac{17}{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+3i | B. | 1+i | C. | 1-i | D. | 1-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com