【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求證:存在唯一的,使得曲線在點(diǎn)處的切線的斜率為;
(3)比較與的大小,并加以證明.
【答案】(1);(2)證明見解析;(3).
【解析】試題分析:(1)求出的值可得切點(diǎn)坐標(biāo),求出,可得的值,從而得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2)由已知,只需證明方程 在區(qū)間有唯一解,先利用導(dǎo)數(shù)證明在區(qū)間單調(diào)遞增,再利用零點(diǎn)存在定理可得結(jié)論;(3)當(dāng)時(shí),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得,即 ,令 即可的結(jié)果.
試題解析:(1)函數(shù)的定義域是,
導(dǎo)函數(shù)為. 所以, 又,
所以曲線在點(diǎn)處的切線方程為,
(2)由已知.
所以只需證明方程 在區(qū)間有唯一解.
即方程 在區(qū)間有唯一解.
設(shè)函數(shù) ,則 .
當(dāng) 時(shí), ,故在區(qū)間單調(diào)遞增.
又 , ,
所以 存在唯一的,使得.
綜上,存在唯一的,使得曲線在點(diǎn)處的切線的斜率為.
(3).證明如下:首先證明:當(dāng)時(shí), .
設(shè) ,則 .
當(dāng) 時(shí), , 所以 ,故在單調(diào)遞增,
所以 時(shí),有,即當(dāng) 時(shí),有.
所以 .
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與零點(diǎn),屬于難題. 求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線在處的切線與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立極坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上任意一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(I)當(dāng)a=2時(shí),求曲線y = 在點(diǎn)(0,f(0))處的切線方程;
(II)求函數(shù)在區(qū)間[0 , e -1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中, ,動(dòng)點(diǎn)滿足:以為直徑的圓與軸相切.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)與的面積之和取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿足直線與斜率之積為.試判斷直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn).正三棱柱的正(主)視圖如圖(2).
(Ⅰ)求正三棱柱的體積;
(Ⅱ)證明: ;
(Ⅲ)圖(1)中垂直于平面的平面有哪幾個(gè)?(直接寫出符合要求的平面即可,不必說明或證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)與拋物線 的焦點(diǎn)重合,橢圓的離心率為,過點(diǎn)作斜率不為0的直線,交橢圓于兩點(diǎn),點(diǎn),且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com