【題目】為了判斷英語(yǔ)詞匯量與閱讀水平是否相互獨(dú)立,某語(yǔ)言培訓(xùn)機(jī)構(gòu)隨機(jī)抽取了100位英語(yǔ)學(xué)習(xí)者進(jìn)行調(diào)查,經(jīng)過(guò)計(jì)算的觀測(cè)值為7,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是(

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

A.99%以上的把握認(rèn)為英語(yǔ)詞匯量與閱讀水平無(wú)關(guān)

B.99.5%以上的把握認(rèn)為英語(yǔ)詞匯量與閱讀水平有關(guān)

C.99.9%以上的把握認(rèn)為英語(yǔ)詞匯量與閱讀水平有關(guān)

D.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,可以認(rèn)為英語(yǔ)詞匯量與閱讀水平有關(guān)

【答案】D

【解析】

由題意,由獨(dú)立性檢驗(yàn)的原理即可得解.

由題意,

所以在犯錯(cuò)誤的概率不超過(guò)1%的前提下,可以認(rèn)為英語(yǔ)詞匯量與閱讀水平有關(guān),有99%的把握認(rèn)為英語(yǔ)詞匯量與閱讀水平有關(guān).

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(,).

1)當(dāng)時(shí),若函數(shù)上有兩個(gè)零點(diǎn),求的取值范圍;

2)當(dāng)時(shí),是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點(diǎn),求ABM面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)城鄉(xiāng)居民儲(chǔ)蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是(

A.城鄉(xiāng)居民儲(chǔ)蓄存款年底余額逐年增長(zhǎng)

B.農(nóng)村居民的存款年底余額所占比重逐年上升

C.2019年農(nóng)村居民存款年底總余額已超過(guò)了城鎮(zhèn)居民存款年底總余額

D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,M,NP分別是C1D1,BC,A1D1的中點(diǎn),有下列四個(gè)結(jié)論:

APCM是異面直線;②AP,CMDD1相交于一點(diǎn);③MNBD1;

MN∥平面BB1D1D

其中所有正確結(jié)論的編號(hào)是( 。

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)中有這樣形狀的曲線:.關(guān)于這種曲線,有以下結(jié)論:

①曲線恰好經(jīng)過(guò)9個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線上任意兩點(diǎn)之間的距離都不超過(guò)2;

③曲線所圍成的花瓣形狀區(qū)域的面積大于5.

其中正確的結(jié)論有:(

A.①③B.②③C.①②D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的數(shù)列的首項(xiàng),前n項(xiàng)和為,若數(shù)列滿足:對(duì)任意正整數(shù)n,k,當(dāng)時(shí),總成立,則稱(chēng)數(shù)列是“數(shù)列”

1)若是公比為2的等比數(shù)列,試判斷是否為“”數(shù)列?

2)若是公差為d的等差數(shù)列,且是“數(shù)列”,求實(shí)數(shù)d的值;

3)若數(shù)列既是“”,又是“”,求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱維中,平面平面,是棱的中點(diǎn),點(diǎn)在棱上點(diǎn)的重心.

1)若的中點(diǎn),證明

2)是否存在點(diǎn),使二面角的大小為,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是給定的平面,設(shè)不在內(nèi)的任意兩點(diǎn)M,N所在的直線為l,則下列命題正確的是(

A.內(nèi)存在直線與直線l異面

B.內(nèi)存在直線與直線l相交

C.內(nèi)存在直線與直線l平行

D.存在過(guò)直線l的平面與平行

查看答案和解析>>

同步練習(xí)冊(cè)答案