【題目】某校為了推動數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級部分生源情況基本相同的學(xué)生分成甲、乙兩個班,每班各40人,甲班按原有模式教學(xué),乙班實施教學(xué)方法改革.經(jīng)過一年的教學(xué)實驗,將甲、乙兩個班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù)再取整,繪制成如下莖葉圖,規(guī)定不低于85分(百分制)為優(yōu)秀,甲班同學(xué)成績的中位數(shù)為74.
(1)求的值和乙班同學(xué)成績的眾數(shù);
(2)完成表格,若有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”的話,那么學(xué)校將擴大教學(xué)改革面,請問學(xué)校是否要擴大改革面?說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標(biāo)方程為.
()求的極坐標(biāo)方程與的直角坐標(biāo)方程.
()若是上任意一點,過點的直線交于點,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天課外體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
將學(xué)生日均課外體育鍛煉時間在的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
參考格式:,其中
0.025 | 0.15 | 0.10 | 0.005 | 0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 2.072 | 6.635 | 7.879 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最近,“百萬英雄”,“沖頂大會”等一些闖關(guān)答題類游戲風(fēng)靡全國,既能答題,又能學(xué)知識,還能掙獎金。若某闖關(guān)答題一輪共有4類題型,選手從前往后逐類回答,若中途回答錯誤,立馬淘汰只能觀戰(zhàn);若能堅持到4類題型全部回答正確,就能分得現(xiàn)金并獲得一枚復(fù)活幣。每一輪闖關(guān)答題順序為:1.文史常識類;2.數(shù)理常識類;3.生活常識類;4.影視藝術(shù)常識類,現(xiàn)從全省高中生中調(diào)查了100位同學(xué)的答題情況統(tǒng)計如下表:
(Ⅰ)現(xiàn)用樣本的數(shù)據(jù)特征估算整體的數(shù)據(jù)特征,從全省高中生挑選4位同學(xué),記為4位同學(xué)獲得獎金的總?cè)藬?shù),求的分布列和期望.
(Ⅱ)若王同學(xué)某輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會在下一輪游戲中自動使用,即下一輪重新進(jìn)行闖關(guān)答題時,若王同學(xué)在某一類題型中回答錯誤,自動復(fù)活一次,視為答對該類題型。請問:仍用樣本的數(shù)據(jù)特征估算王同學(xué)的數(shù)據(jù)特征,那么王同學(xué)在獲得復(fù)活幣的下一輪答題游戲中能夠最終獲得獎金的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以、、、、、為頂點的五面體中,平面平面,,四邊形為平行四邊形,且.
(1)求證:;
(2)若,,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形中,,,,、分別為、的中點,現(xiàn)把平行四邊形1沿折起如圖2所示,連接、、.
(1)求證:;
(2)若,求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com