【題目】若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0 , h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3﹣3x2+2,則f( )+f( )+…+f( )+f( )= .
【答案】0
【解析】解:f′(x)=3x2﹣6x,f″(x)=6x﹣6,
令f″(x)=0得x=1,
∴f(x)的對稱中心為(1,0),
∵ = =…= . =2,
∴f( )+f( )=f( )+f( )=…=f( )+f( )=0,
又f( )=f(1)=0
∴f( )+f( )+…+f( )+f( )=0.
所以答案是:0.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的圖象的相關(guān)知識,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點組成;圖像上每一點坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值,以及對函數(shù)的值的理解,了解函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對稱,且時,求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時,函數(shù)有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別與BC,AD交于點P,Q,若 =t .
(1)當(dāng)t= 時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實數(shù)t的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生會為了調(diào)查學(xué)生對2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):
不關(guān)注 | 關(guān)注 | 總計 | |
男生 | 30 | 15 | 45 |
女生 | 45 | 10 | 55 |
總計 | 75 | 25 | 100 |
根據(jù)表中數(shù)據(jù),通過計算統(tǒng)計量K2= ,并參考一下臨界數(shù)據(jù):
P(K2>k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
若由此認為“學(xué)生對2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機廠商推出一次智能手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:
女性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 20 | 40 | 80 | 50 | 10 | |
男性用戶 | 分值區(qū)間 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大小(不計算具體值,給出結(jié)論即可);
(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取3名用戶,求3名用戶評分小于90分的人數(shù)的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知不等式ax2-3x+6>4的解集為{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù).
(1)若,求函數(shù)的值域;
(2)設(shè)的三個內(nèi)角所對的邊分別為,若A為銳角且,,,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com