分析 (1)根據(jù)函數(shù)奇偶性的定義建立方程即可求出a,根據(jù)分式函數(shù)的意義即可求出函數(shù)的定義域.
(2)利用函數(shù)單調(diào)性的定義,設(shè)出變量,利用作差法進行證明即可.
(3)根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)將不等式進行轉(zhuǎn)化求解即可.
解答 解:(1)要使函數(shù)有意義,則2x-1≠0,即2x≠1,即x≠0,
則函數(shù)的定義域為{x|x≠0},
∵函數(shù)f(x)=$\frac{1}{{{2^x}-1}}$+a是奇函數(shù),可得f(x)+f(-x)=0,
∴$\frac{1}{{{2^x}-1}}$+a+$\frac{1}{{{2^{-x}}-1}}$+a=0,解得a=$\frac{1}{2}$,
∴函數(shù)f(x)=$\frac{1}{{{2^x}-1}}$+$\frac{1}{2}$,
(2)由(1)得f(x)=$\frac{1}{{{2^x}-1}}$+$\frac{1}{2}$,
則f(x)在(0,+∞)上都是減函數(shù),證明如下
任取x1<x2則
f(x1)-f(x2)=$\frac{1}{{2}^{{x}_{1}}-1}-\frac{1}{{2}^{{x}_{2}}-1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$
當(dāng)x1,x2∈(0,+∞)時,${2}^{{x}_{1}}-1$>0,${2}^{{x}_{2}}-1$>0,${2}^{{x}_{2}}-{2}^{{x}_{1}}>0$,
所以$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$>0,
有f(x1)-f(x2)>0
即f(x1)>f(x2),
則f(x)=$\frac{1}{{{2^x}-1}}$+$\frac{1}{2}$在(0,+∞)上是減函數(shù);
(3)∵函數(shù)f(x)是奇函數(shù)且在(0,+∞)上是減函數(shù),
∴由f(-m2+2m-1)+f(m2+3)<0
得f(m2+3)<-f(-m2+2m-1)=f(m2-2m+1),
∵m2+3>0,m2-2m+1=(m-1)2≥0,
∴m2+3>m2-2m+1,且(m-1)2≠0
即2m>-2且m≠1,得m>-1且m≠1.
點評 本題考查了函數(shù)奇偶性的性質(zhì)以及函數(shù)單調(diào)性的證明方法定義法,解題的關(guān)鍵是理解奇函數(shù)的定義及單調(diào)性的證明方法,本題的重點是單調(diào)性的證明,其中判斷符號是難點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 12 | C. | 24 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{17}$ | B. | $\frac{15\sqrt{3}+8}{34}$ | C. | $\frac{15-8\sqrt{3}}{34}$ | D. | $\frac{15+8\sqrt{3}}{34}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com