已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點.

(1)若|AB|=,求直線l的傾斜角;

(2)若點P(1,1)滿足2,求此時直線l的方程.

 

(1). (2)x-y=0或x+y-2=0.

【解析】(1)由圓C:x2+(y-1)2=5,得圓的半徑r=,

又|AB|=,故弦心距d=.

再由點到直線的距離公式可得d=,

,解得m=±.

即直線l的斜率等于±,故直線l的傾斜角等于.

(2)設(shè)A(x1,mx1-m+1),B(x2,mx2-m+1),由題意2可得2(1-x1,-mx1+m)=(x2-1,mx2-m),

∴2-2x1=x2-1,即2x1+x2=3.①

再把直線方程y-1=m(x-1)代入圓C:x2+(y-1)2=5,化簡可得(1+m2)x2-2m2x+m2-5=0,由根與系數(shù)關(guān)系可得x1+x2=.②

由①②解得x1=,故點A的坐標為(,).

把點A的坐標代入圓C的方程可得m2=1,即m=±1,故直線l的方程為x-y=0或x+y-2=0.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-9圓錐曲線的綜合問題(解析版) 題型:選擇題

若雙曲線=1(a>b>0)的左、右焦點分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點分成7∶5的兩段,則此雙曲線的離心率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-6雙曲線(解析版) 題型:解答題

如圖所示,雙曲線的中心在坐標原點,焦點在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點,雙曲線的左支上有一點P,∠F1PF2=,且△PF1F2的面積為2,雙曲線的離心率為2,求該雙曲線的標準方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:填空題

已知P為橢圓=1上的一點,M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點,則|PM|+|PN|的最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:選擇題

已知橢圓C:=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是(  )

A.[1,4) B.[1,+∞)

C.[1,4)∪(4,+∞) D.(4,+∞)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題

在平面直角坐標系xOy中,設(shè)過原點的直線l與圓C:(x-3)2+(y-1)2=4交于M、N兩點,若|MN|≥2,則直線l的斜率k的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:解答題

已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.

(1)求圓C的方程;

(2)過點(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點,求四邊形PMQN面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:填空題

已知0<k<4,直線l1:kx-2y-2k+8=0和直線l2:2x+k2y-4k2-4=0與兩坐標軸圍成一個四邊形,則使得這個四邊形面積最小的k值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-7立體幾何中的向量方法(解析版) 題型:選擇題

如圖所示,ABCD-A1B1C1D1是棱長為6的正方體,E、F分別是棱AB、BC上的動點,且AE=BF.當A1、E、F、C1共面時,平面A1DE與平面C1DF所成二面角的余弦值為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習冊答案