【題目】已知橢圓)的左、右焦點分別為,焦距為,過點作直線交橢圓兩點,的周長為.

1)求橢圓的方程;

2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構(gòu)成的三角形面積的最大值.

【答案】12

【解析】

1)根據(jù)題意可得,,再由,即可求解.

2)設(shè)直線的方程為,將直線與橢圓方程聯(lián)立求得關(guān)于的方程,利用弦長公式求出,再利用點到直線的距離求出點到直線的距離,利用三角形的面積公式配方即可求解.

解(1)由題意的:,,∴,

∴橢圓的方程為

(2)∵直線的斜率為,∴可設(shè)直線的方程為

與橢圓的方程聯(lián)立可得:

設(shè)兩點的坐標(biāo)為,由韋達(dá)定理得:

,

到直線的距離,

由①知:,

,則,∴

,則上的最大值為

的最大值為

綜上所述:三角形面積的最大值2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在直角梯形中,,,,,,點恰好在線段的垂直平分線上,以為折痕將折起,使點到達(dá)點的位置,且平面底面,如圖2所示,是線段的中點.

1)證明:平面;

2)若三棱錐的體積為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積的經(jīng)驗公式為:.弧田(如圖1陰影部分)由圓弧和其所對弦圍成,弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:圓面積.球缺是指一個球被平面截下的一部分,廈門嘉庚體育館近似球缺結(jié)構(gòu)(如圖3),若該體育館占地面積約為18000,建筑容積約為340000,估計體育館建筑高度(單位:)所在區(qū)間為( )

參考數(shù)據(jù): ,,

.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】牛頓迭代法(Newton's method)又稱牛頓拉夫遜方法(NewtonRaphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)的根,選取作為初始近似值,過點作曲線的切線軸的交點的橫坐標(biāo),稱的一次近似值,過點作曲線的切線,則該切線與軸的交點的橫坐標(biāo)為,稱的二次近似值.重復(fù)以上過程,直到的近似值足夠小,即把作為的近似解.設(shè)構(gòu)成數(shù)列.對于下列結(jié)論:

;

;

;

.

其中正確結(jié)論的序號為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動新能源汽車發(fā)展的主要動力.假定現(xiàn)在市售的某款新能源汽車上,車載動力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)k為常數(shù),).

1)在下列條件中選擇一個________使數(shù)列是等比數(shù)列,說明理由;

①數(shù)列是首項為2,公比為2的等比數(shù)列;

②數(shù)列是首項為4,公差為2的等差數(shù)列;

③數(shù)列是首項為2,公差為2的等差數(shù)列的前n項和構(gòu)成的數(shù)列.

2)在(1)的條件下,當(dāng)時,設(shè),求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,離心率為的橢圓的左頂點為,過原點的直線(與坐標(biāo)軸不重合)與橢圓交于兩點,直線分別與軸交于, 兩點.若直線斜率為 時, .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)試問以為直徑的圓是否經(jīng)過定點(與直線的斜率無關(guān))?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時,求曲線在點處的切線方程;

2)當(dāng)時,求函數(shù)的極值.

查看答案和解析>>

同步練習(xí)冊答案