【題目】設(shè)f(x)=a(x-5)2+6lnx,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
【答案】(1) a=.(2)見解析.
【解析】試題分析:(1)求出導(dǎo)數(shù),得,寫出題中切線方程,令,則,由此可得;(2)解不等式得增區(qū)間,解不等式得減區(qū)間; 的點(diǎn)就是極值點(diǎn),由剛才的單調(diào)性可知是極大值點(diǎn)還是極小值點(diǎn).
試題解析:(1)因?yàn)?/span>,
故.
令,得, ,
所以曲線在點(diǎn)處的切線方程為,
由點(diǎn)在切線上,可得,解得.
(2)由(1)知, (),
.
令,解得, .
當(dāng)或時(shí), ,故的遞增區(qū)間是, ;
當(dāng)時(shí), ,故的遞減區(qū)間是.
由此可知在處取得極大值,
在處取得極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 表示神風(fēng)摩托車廠一天的銷售收入與摩托車銷售量的關(guān)系; 表示摩托車廠一天的銷售成本與銷售量的關(guān)系.
(1)寫出銷售收入與銷售量之間的函數(shù)關(guān)系式;
(2)寫出銷售成本與銷售量之間的函數(shù)關(guān)系式;
(3)當(dāng)一天的銷售量為多少輛時(shí),銷售收入等于銷售成本;
(4)當(dāng)一天的銷售超過多少輛時(shí),工廠才能獲利?(利潤(rùn)=收入-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上,且與另一條直線相切于點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知,點(diǎn)在圓上運(yùn)動(dòng),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x),f(0)=-2,且對(duì),yR,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達(dá)式;
(2)已知關(guān)于x的不等式f(x)-ax+a+1的解集為A,若A[2,3],求實(shí)數(shù)a的取值范圍;
(3)已知數(shù)列{}中, , ,記,且數(shù)列{的前n項(xiàng)和為,
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左焦點(diǎn)為,點(diǎn)為雙曲線右支上的一點(diǎn),且與圓相切于點(diǎn)為線段的中點(diǎn), 為坐標(biāo)原點(diǎn),則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四個(gè)部分,且截x軸所得線段的長(zhǎng)為2。
(I)求⊙H的方程;
(Ⅱ)若存在過點(diǎn)P(0,b)的直線與⊙H相交于M,N兩點(diǎn),且點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計(jì)的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。
區(qū)間 | |||||
人數(shù) | a | b |
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1 人在第3組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過定點(diǎn),并求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com