8.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax+1-4(a為常數(shù)),則f(-1)的值為-12.

分析 根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax+1-4(a為常數(shù)),
∴f(0)=0,即f(x)=a-4=0,則a=4,
則當(dāng)x≥0時(shí),f(x)=4x+1-4,
則f(-1)=-f(1)=-(42-4)=-12,
故答案為:-12

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求下列數(shù)列的通項(xiàng)公式.
(1)已知{an}滿足:a1=0,an+1=an+n,求數(shù)列{an}的一個(gè)通項(xiàng)公式(已知1+2+…+n=$\frac{n(n+1)}{2}$);
(2)已知數(shù)列{an}滿足a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n}$,求數(shù)列{an}的一個(gè)通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.有下列四個(gè)命題:
①若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=0或$\overrightarrow$=0;
②對(duì)任意兩個(gè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,都有$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$≤1;
③$\overrightarrow{a}•\overrightarrow$>0?$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
④|$\overrightarrow{a}$|=|$\overrightarrow$?|$\overrightarrow{a}•\overrightarrow{c}$|=|$\overrightarrow•\overrightarrow{c}$|.
其中正確的命題是( 。
A.①③④B.①③C.D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)P是△ABC所在平面內(nèi)的一點(diǎn),且$\overrightarrow{CP}$=2$\overrightarrow{PA}$,則△PAB與△PBC的面積之比是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知空間兩條不同的直線m、n和兩個(gè)不同的平面α、β,則下列命題正確的是( 。
A.若m∥α,n?α,則m∥nB.若m∥α,n∥α,則m∥n
C.若m∥α,m?β,α∩β=n,則m∥nD.若α∩β=m,m⊥n,則n⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)$f(x)=\frac{2^x}{{1+{2^x}}}(x∈R)$,若用[m]表示不超過(guò)實(shí)數(shù)m的最大整數(shù),則函數(shù)$y=[f(x)-\frac{1}{2}]+[f(-x)+\frac{1}{2}]$的值域?yàn)閧0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x2+x,則f(2)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{5}{1-i}$=(  )
A.i-2B.$\frac{5}{2}$+$\frac{i}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.A,B,C,D是同一球面上的四個(gè)點(diǎn),△ABC中$∠BAC=\frac{π}{2},AB=AC,AD⊥$平面ABC,AD=2,$BC=\sqrt{6}$,則該球的表面積為10π.

查看答案和解析>>

同步練習(xí)冊(cè)答案