【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)判斷并說(shuō)明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

【答案】1)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為2存在兩個(gè)零點(diǎn),詳見(jiàn)解析; 的最小值為3

【解析】

1)求出導(dǎo)函數(shù),由確定增區(qū)間,由確定減區(qū)間;

2)求出導(dǎo)函數(shù),分類討論的正負(fù),確定的單調(diào)性,再根據(jù)零點(diǎn)存在定理確定零點(diǎn)存在的區(qū)間.首先確定上有一個(gè)零點(diǎn),然后確定,,,上有否零點(diǎn),從而可得的最小值.

解:(1的定義域?yàn)?/span>,

,

,得,(舍).

當(dāng)時(shí),,當(dāng)時(shí),,

所以上單調(diào)遞增,在上單調(diào)遞減,

因此,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

2,

當(dāng)時(shí),,

因?yàn)?/span>單調(diào)遞減,

所以,上單調(diào)遞增,

,,

所以存在唯一,使得.

當(dāng),

所以單調(diào)遞減,

,

所以,上單調(diào)遞增.

因?yàn)?/span>,所以,故不存在零點(diǎn).

當(dāng)時(shí),,,

所以單調(diào)遞減,

,,

所以存在,使得.

當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),單調(diào)遞減.

,,

所以存在唯一,使得.

當(dāng)時(shí),,故不存在零點(diǎn).

綜上,存在兩個(gè)零點(diǎn),,且,,

因此的最小值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求直線和曲線的直角坐標(biāo)方程;

2)若點(diǎn)坐標(biāo)為,直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】成都七中為了解班級(jí)衛(wèi)生教育系列活動(dòng)的成效,對(duì)全校40個(gè)班級(jí)進(jìn)行了一次突擊班級(jí)衛(wèi)生量化打分檢查(滿分100分,最低分20分).根據(jù)檢查結(jié)果:得分在評(píng)定為“優(yōu)”,獎(jiǎng)勵(lì)3面小紅旗;得分在評(píng)定為“良”,獎(jiǎng)勵(lì)2面小紅旗;得分在評(píng)定為“中”,獎(jiǎng)勵(lì)1面小紅旗;得分在評(píng)定為“差”,不獎(jiǎng)勵(lì)小紅旗.已知統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖如圖:

1)依據(jù)統(tǒng)計(jì)結(jié)果的部分頻率分布直方圖,求班級(jí)衛(wèi)生量化打分檢查得分的中位數(shù);

2)學(xué)校用分層抽樣的方法,從評(píng)定等級(jí)為“良”、“中”的班級(jí)中抽取6個(gè)班級(jí),再?gòu)倪@6個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)進(jìn)行抽樣復(fù)核,求所抽取的2個(gè)班級(jí)獲得的獎(jiǎng)勵(lì)小紅旗面數(shù)和不少于3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知M是橢圓C+=1(a>b>0)上一點(diǎn),F1F2分別為橢圓C的左右焦點(diǎn),且|F1F2|=2,∠F1MF2=,F1MF2的面積為.

1)求橢圓C的方程;

2)直線l過(guò)橢圓C右焦點(diǎn)F2,交該橢圓于AB兩點(diǎn),AB中點(diǎn)為Q,射線OQ交橢圓于P,記AOQ的面積為S1,BPQ的面積為S2,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列的前n項(xiàng)和為, ,且,,.在①;②;③這三個(gè)條件中任選其中一個(gè),補(bǔ)充在上面的橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則按選擇第一個(gè)解答計(jì)分).

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下三個(gè)條件:

①數(shù)列是首項(xiàng)為 2,滿足的數(shù)列;

②數(shù)列是首項(xiàng)為2,滿足λR)的數(shù)列;

③數(shù)列是首項(xiàng)為2,滿足的數(shù)列..

請(qǐng)從這三個(gè)條件中任選一個(gè)將下面的題目補(bǔ)充完整,并求解.

設(shè)數(shù)列的前n項(xiàng)和為滿足______,記數(shù)列,,求數(shù)列{}的前n項(xiàng)和

(注:如選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方艙醫(yī)院的啟用在本次武漢抗擊新冠疫情的關(guān)鍵時(shí)刻起到了至關(guān)重要的作用,圖1為某方艙醫(yī)院的平面設(shè)計(jì)圖,其結(jié)構(gòu)可以看成矩形在四個(gè)角處對(duì)稱地截去四個(gè)全等的三角形所得,圖2中所示多邊形,整體設(shè)計(jì)方案要求:內(nèi)部井字形的兩根水平橫軸米,兩根豎軸米,記整個(gè)方艙醫(yī)院的外圍隔離線(圖2實(shí)線部分,軸和邊框的粗細(xì)忽略不計(jì))總長(zhǎng)度為,的交點(diǎn)為、、的交點(diǎn)為、.

1)若,且兩根橫軸之間的距離米,求外圍隔離線總長(zhǎng)度;

2)由于疫情需要,外圍隔離線總長(zhǎng)度不超過(guò)240米,當(dāng)整個(gè)方艙醫(yī)院(多邊形的面積)最大時(shí),給出此設(shè)計(jì)方案中的大小與的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示一個(gè)小于或等于的最大整數(shù).如:,,. 已知實(shí)數(shù)列、對(duì)于所有非負(fù)整數(shù)滿足,其中是任意一個(gè)非零實(shí)數(shù).

)若,寫(xiě)出、;

)若,求數(shù)列的最小值;

)證明:存在非負(fù)整數(shù),使得當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示多面體的底面是菱形,,平面,平面.

I)求證:平面;

II)若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案