14.設(shè)an=3n,求證:$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.

分析 $\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$>$\frac{1}{3}+\frac{1}{{3}^{2}}+…+\frac{1}{{3}^{n}}$,$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$<$\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n}}$,由此利用等比數(shù)列的前n項(xiàng)和公式能證明$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.

解答 證明:∵an=3n
∴$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$
>$\frac{1}{3}+\frac{1}{{3}^{2}}+…+\frac{1}{{3}^{n}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}$[1-($\frac{1}{3}$)n].
$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$
<$\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$<1.
∴$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.

點(diǎn)評(píng) 本題考查不等式的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意放縮法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=loga(2x-3)(a>0且a≠1)的定義域?yàn)椋?\frac{3}{2}$,+∞),圖象過的定點(diǎn)為(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)50個(gè)紅包,每個(gè)紅包金額為x元,x∈[1,5].已知在每輪游戲中所產(chǎn)生的50個(gè)紅包金額的頻率分布直方圖如圖所示.
(Ⅰ)求a的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);
(Ⅱ)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在[1,2)的紅包個(gè)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求證:AC⊥PB;
(2)若PB=PC=$\sqrt{2}$,問在側(cè)棱PB上是否存在一點(diǎn)M,使得二面角M-AD-B的余弦值為$\frac{{5\sqrt{3}}}{9}$?若存在,求出$\frac{PM}{PB}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.圓x2+y2+Dx+Ey-4=0的圓心為(-1,2),則圓的半徑為( 。
A.6B.9C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,$\frac{1}{9}$)
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù).

(1)用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上為增函數(shù);

(2)若,當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知集合,,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

下列結(jié)論判斷正確的是( )

A.任意兩條直線確定一個(gè)平面

B.三條平行直線最多確定三個(gè)平面

C.棱長(zhǎng)為1的正方體的內(nèi)切球的表面積為

D.若平面平面,平面平面,則平面平面

查看答案和解析>>

同步練習(xí)冊(cè)答案