已知n為正偶數(shù),用數(shù)學(xué)歸納法證明時,若已假設(shè)n=k(k≥2)為偶數(shù))時命題為真,則還需要用歸納假設(shè)再證n=( )時等式成立.
A.n=k+1 B.n=k+2 C.n=2k+2 D.n=2(k+2)
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 2.1同余練習(xí)卷(解析版) 題型:選擇題
(2012•貴溪市模擬)設(shè)a、b、β為整數(shù)(β>0),若a和b被β除得的余數(shù)相同,則稱a和b對β同余,記為a=b(modβ),已知a=1+C+C•2+C•22+…+C•219,b=a(mod10),則b的值可以是( )
A.2010 B.2011 C.2012 D.2009
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:選擇題
五進制數(shù)444(5)轉(zhuǎn)化為八進制數(shù)是( )
A.194(8) B.233(8) C.471(8) D.174(8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.2數(shù)學(xué)歸納法證明不等式舉例(解析版) 題型:選擇題
用數(shù)學(xué)歸納法證明:(n∈N*)時第一步需要證明( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題
已知n為正偶數(shù),用數(shù)學(xué)歸納法證明1﹣+﹣+…+=2(+…+)時,若已假設(shè)n=k(k≥2為偶數(shù))時命題為真,則還需要用歸納假設(shè)再證( )
A.n=k+1時等式成立 B.n=k+2時等式成立
C.n=2k+2時等式成立 D.n=2(k+2)時等式成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題
某個命題與自然數(shù)n有關(guān),若n=k(k∈N*)時命題成立,那么可推得當(dāng)n=k+1時該命題也成立.現(xiàn)已知當(dāng)n=5時,該命題不成立,那么可推得( )
A.當(dāng)n=6時,該命題不成立 B.當(dāng)n=6時,該命題成立
C.當(dāng)n=4時,該命題不成立 D.當(dāng)n=4時,該命題成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.3排序不等式練習(xí)卷(解析版) 題型:解答題
設(shè)a1,a2,…,an為正數(shù),求證:++…++≥a1+a2+…+an.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.1二維形式柯西不等式練習(xí)卷(解析版) 題型:填空題
(2014•黃浦區(qū)一模)設(shè)向量=(a,b),=(m,n),其中a,b,m,n∈R,由不等式||•||恒成立,可以證明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(當(dāng)且僅當(dāng),即an=bm時等號成立),己知x,y∈R+,若恒成立,利用柯西不等式可求得實數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.2綜合法與分析法練習(xí)卷(解析版) 題型:填空題
要證明“”可選擇的方法有以下幾種,其中最合理的是 .(填序號).①反證法,②分析法,③綜合法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com