【題目】一個(gè)不透明的袋子中,放有大小相同的5個(gè)小球,其中3個(gè)黑球,2個(gè)白球.如果不放回的依次取出2個(gè)球.回答下列問(wèn)題:

()第一次取出的是黑球的概率;

()第一次取出的是黑球,且第二次取出的是白球的概率;

()在第一次取出的是黑球的條件下,第二次取出的是白球的概率.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)黑球有3個(gè),球的總數(shù)為5個(gè),代入概率公式即可;

(Ⅱ)利用獨(dú)立事件的概率公式直接求解即可;

(Ⅲ)直接用條件概率公式求解.

依題意,設(shè)事件A表示第一次取出的是黑球,設(shè)事件B表示第二次取出的是白球

(Ⅰ)黑球有3個(gè),球的總數(shù)為5個(gè),

所以PA;

(Ⅱ)第一次取出的是黑球,且第二次取出的是白球的概率為PAB;

(Ⅲ)在第一次取出的是黑球的條件下,第二次取出的是白球的概率為PB|A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列和等比數(shù)列中, ,,項(xiàng)和.

(1)若 ,求實(shí)數(shù)的值;

(2)是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中?若存在,求出所有的,若不存在,說(shuō)明理由;

(3)是否存在正實(shí)數(shù),使得數(shù)列中至少有三項(xiàng)在數(shù)列中,但中的項(xiàng)不都在數(shù)列中?若存在,求出一個(gè)可能的的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A3,3),B5,–1)到直線(xiàn)l的距離相等,且直線(xiàn)l過(guò)點(diǎn)P0,1),則直線(xiàn)l的方程(

A.y=1B.2x+y–1=0

C.2x+y–1=02x+y+1=0D.y=12x+y–1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有高中學(xué)生500人,其中男生320人,女生180.有人為了獲得該校全體高中學(xué)生的身高信息,采用分層抽樣的方法抽取樣本,并觀測(cè)樣本的指標(biāo)值(單位:cm),計(jì)算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.

1)根據(jù)以上信息,能夠計(jì)算出總樣本的均值和方差嗎?為什么?

2)如果已知男、女樣本量按比例分配,你能計(jì)算出總樣本的均值和方差各為多少嗎?

3)如果已知男、女的樣本量都是25,你能計(jì)算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計(jì)合適嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在試驗(yàn)E“連續(xù)拋擲一枚骰子2次,觀察每次擲出的點(diǎn)數(shù)”中,事件A表示隨機(jī)事件“第一次擲出的點(diǎn)數(shù)為1”,事件表示隨機(jī)事件“第一次擲出的點(diǎn)數(shù)為1,第二次擲出的點(diǎn)數(shù)為j,事件B表示隨機(jī)事件“2次擲出的點(diǎn)數(shù)之和為6”,事件C表示隨機(jī)事件“第二次擲出的點(diǎn)數(shù)比第一次的大3”,

1)試用樣本點(diǎn)表示事件

2)試判斷事件AB,ACBC是否為互斥事件;

3)試用事件表示隨機(jī)事件A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與直線(xiàn)相切于點(diǎn)

()的值;

()求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知頂點(diǎn)是坐標(biāo)原點(diǎn)的拋物線(xiàn)的焦點(diǎn)軸正半軸上,圓心在直線(xiàn)上的圓軸相切,且關(guān)于點(diǎn)對(duì)稱(chēng).

(1)求的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(xiàn)交于,與交于,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.

(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:經(jīng)過(guò)點(diǎn),離心率為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線(xiàn)交橢圓于,兩點(diǎn),為橢圓的左焦點(diǎn),若,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案