【題目】已知拋物線C:y2=2px(p>0),直線l與拋物線C相交于A,B兩點,P為拋物線上一點,當直線l過拋物線焦點時,|AB|的最小值為2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若AB的中點為(3,1),且直線PA,PB的傾斜角互補,求△PAB的面積.

【答案】解:(Ⅰ)∵拋物線C:y2=2px(p>0),直線l與拋物線C相交于A,B兩點,P為拋物線上一點,

當直線l過拋物線焦點時,|AB|的最小值為2,

∴2p=2,解得p=1,

∴拋物線C的方程為y2=2x.

(Ⅱ)設A(x1,y1),B(x2,y2),P(x0,y0),

設直線l的方程為x=my+n,代入拋物線方程得y2﹣2my﹣2n=0,

y1+y2=2m,y1y2=﹣2n,

∵AB的中點為(3,1),∴2m=2,即m=1,

∴直線l的方程為x=y+2,

∴y1+y2=2,y1y2=﹣4,

∴|AB|= =2 ,

∵kAP+kBP= = =0,

∴2y0+y1+y2=0,∴y0=﹣1,

∴P( ),點P到直線l的距離d= ,

∴△PAB的面積為 |AB|d=


【解析】(Ⅰ)當直線l過拋物線焦點時,|AB|的最小值為2,由此得到2p=2,從而能求出拋物線C的方程.(Ⅱ)設直線l的方程為x=my+n,代入拋物線方程得y2﹣2my﹣2n=0,利用韋達定理結合AB的中點為(3,1),求出m=1,從而直線l的方程為x=y+2,由此利用弦長公式、直線PA,PB的傾斜角互補、點到直線的距離公式,結合已知條件能求出△PAB的面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)證明:平面ADB⊥平面BDC;

(2)若BD=1,求三棱錐D-ABC的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國的高鐵技術發(fā)展迅速,鐵道部門計劃在兩城市之間開通高速列車,假設列車在試運行期間,每天在兩個時間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時間及概率如下表所示:

發(fā)車

時間

概率

若甲、乙兩位旅客打算從城到城,他們到達火車站的時間分別是周六的和周日的(只考慮候車時間,不考慮其他因素).

(1)設乙候車所需時間為隨機變量(單位:分鐘),求的分布列和數(shù)學期望;

(2)求甲、乙兩人候車時間相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關系,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2 , 過右焦點F2且與x軸垂直的直線與雙曲線兩條漸近線分別交于A,B兩點,若△ABF1為等腰直角三角形,且|AB|=4 ,P(x,y)在雙曲線上,M( ),則|PM|+|PF2|的最小值為(
A. ﹣1
B.2
C.2 ﹣2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點,求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個圓柱形圓木的底面半徑為1 m,長為10 m,將此圓木沿軸所在的平面剖成兩部分.現(xiàn)要把其中一部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD如圖所示,其中O為圓心,C,D在半圓上,設,木梁的體積為V單位:m3,表面積為S單位:m2

1求V關于θ的函數(shù)表達式;

2的值,使體積V最大;

3問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中.

圖(1圖(2

(Ⅰ)如圖(1)求與平面所成的角

(Ⅱ)如圖(2)求證: ∥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設z1 , z2是復數(shù),則下列命題中的假命題是(
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1 =z2
D.若|z1|=|z2|,則z12=z22

查看答案和解析>>

同步練習冊答案