4.下列函數(shù)中,在其定義域內(nèi)既是增函數(shù)又是奇函數(shù)的是( 。
A.y=tanxB.y=x3C.y=lgxD.y=3x

分析 根據(jù)正切函數(shù)的單調(diào)性,奇函數(shù)、增函數(shù)的定義,以及奇函數(shù)圖象的對稱性便可判斷每個(gè)選項(xiàng)的正誤,從而找出正確選項(xiàng).

解答 解:y=tanx在定義域上沒有單調(diào)性,y=lgx和y=3x的圖象不關(guān)于原點(diǎn)對稱,不是奇函數(shù);
y=x3在定義域R內(nèi)是奇函數(shù),也是增函數(shù),即B正確.
故選B.

點(diǎn)評 考查正切函數(shù)的單調(diào)性,以及奇函數(shù)的定義,奇函數(shù)圖象的對稱性,熟悉對數(shù)函數(shù)、指數(shù)函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若${∫}_{2}^{3}$(3x2-2mx)dx=34,則m等于( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-2x+c.
(1)若方程f(x)=1-x在(-∞,1]上有兩個(gè)不等的實(shí)根,求實(shí)數(shù)c的取值范圍.
(2)是否存在實(shí)數(shù)c,使得當(dāng)a+b≤2時(shí),函數(shù)f(x)在區(qū)間[a,b]上的值域恰為[a,b]?若存在,求出c的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|x>a},集合B={-1,0,2},若A∩B=B,則實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(-∞,1)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow$=(0,1).設(shè)向量$\overrightarrow{x}=\overrightarrow{a}$+(1+cosθ)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+sin2θ•$\overrightarrow$
(1)若$\overrightarrow{x}$∥$\overrightarrow{y}$,且θ=$\frac{π}{3}$求實(shí)數(shù)k的值;
(2)若$\overrightarrow{x}$⊥$\overrightarrow{y}$,且θ=$\frac{2π}{3}$,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\frac{{{{cos}^2}(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)•sin(π+α)}}$=$\frac{1}{2}$.
(Ⅰ)求tanα的值;
(Ⅱ)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合{a,$\frac{a}$,1}={0,a+b,a2},則a2+b2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正方形的四個(gè)頂點(diǎn)A(-1,-1),B(1,-1),C(1,1),D(-1,1).拋物線y2=2px過C點(diǎn).若將質(zhì)點(diǎn)P(x,y)投入到正方形ABCD中,則y2<2px的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.命題”?x∈R,ex-3x>0“的否定為?x∈R,ex-3x≤0.

查看答案和解析>>

同步練習(xí)冊答案