如圖,直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(-1,0),直角頂點(diǎn)B的坐標(biāo)為數(shù)學(xué)公式,頂點(diǎn)C在x軸上.求:
(1)求點(diǎn)C的坐標(biāo)及△ABC的外接圓M的方程;
(2)設(shè)△ABC的外接圓M的圓心為點(diǎn)M,另有一個(gè)定點(diǎn)N(-3,-4),作出一個(gè)以MN為直徑,G為圓心的圓,記為圓G,圓M和圓G交于點(diǎn)P和點(diǎn)Q,直線NP,NQ是圓M的切線嗎?請(qǐng)說(shuō)明理由;
(3)求直線PQ的方程.

解:(1)由題意可知:,∴,
直線BC的方程為:,令y=0,則x=3,所以點(diǎn)C的坐標(biāo)為(3,0),
∵△ABC為直角三角形,∴△ABC外接圓的圓心為線段AC的中點(diǎn)M(1,0),半徑為
∴圓M的方程為:(x-1)2+y2=4;
(2)∵M(jìn)(1,0),N(-3,-4)
∴線段MN的中點(diǎn)為G(-1,-2),|MN|=4
∴圓G的方程為:(x+1)2+(y+2)2=8
∵M(jìn)N為圓G的直徑,P,Q為圓G上的點(diǎn)
∴PM⊥PN,QM⊥QN
∴直線NP,NQ是圓M的切線;
(3)∵圓M的方程為:(x-1)2+y2=4,圓G的方程為:(x+1)2+(y+2)2=8,
∴兩圓方程相減,可得直線PQ的方程為x+y=0.
分析:(1)求出直線BC的方程,可得點(diǎn)C的坐標(biāo),根據(jù)△ABC為直角三角形,確定△ABC的外接圓M的圓心與半徑,從而可求方程;
(2)求出圓G的方程,利用切線的定義,即可得到結(jié)論;
(3)兩圓方程相減,可得直線PQ的方程.
點(diǎn)評(píng):本題考查圓的方程,考查直線與圓、圓與圓的位置關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.點(diǎn)M,N分別在邊AB和AC 上(M點(diǎn)和B點(diǎn)不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽′MN,使頂點(diǎn)A′落在邊BC上(A′點(diǎn)和B點(diǎn)不重合).設(shè)∠AMN=θ.
(1)用θ表示∠BA′M和線段AM的長(zhǎng)度,并寫出θ的取值范圍;
(2)求線段AN長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角三角形ABC中,∠B=90°,AB=1,BC=
3
.點(diǎn)M,N分別在邊AB和AC上(M點(diǎn)和B點(diǎn)不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽'MN,使頂點(diǎn)A'落在邊BC上(A'點(diǎn)和B點(diǎn)不重合).設(shè)∠AMN=θ.
(1)用θ表示線段AM的長(zhǎng)度,并寫出θ的取值范圍;
(2)在△AMN中,若
AN
sin∠AMN
=
MA
sin∠ANM
,求線段A'N長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題為選做題,請(qǐng)?jiān)谙铝腥}中任選一題作答)
A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點(diǎn)D,AD=2,則∠C的大小為
30°
30°

B(《坐標(biāo)系與參數(shù)方程選講》選做題).已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,則點(diǎn)A(2,
4
)到這條直線的距離為
2
2
2
2

C(不等式選講)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸陽(yáng)三模)(考生注意:請(qǐng)?jiān)谙铝腥涝囶}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(不等式選做題)若不等式|2a-1|≤ |x+
1
x
|
對(duì)一切非零實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為
[-
1
2
,
3
2
]
[-
1
2
,
3
2
]

B.(幾何證明選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點(diǎn)D,AD=2,則∠C的大小為
30°
30°

C.(極坐標(biāo)與參數(shù)方程選做題)若直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=3
2
,圓C:
x=cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到直線l的距離為d,則d的最大值為
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:直角三角形ABC中,AC⊥BC,AB=2,D是AB的中點(diǎn),M是CD上的動(dòng)點(diǎn).
(1)若M是CD的中點(diǎn),求
MA
MB
的值;
(2)求(
MA
+
MB
)•
MC
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案