【題目】如圖,在四棱錐E﹣ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求棱錐C﹣ADE的體積;
(2)在線段DE上是否存在一點P,使AF∥平面BCE?若存在,求出 的值;若不存在,請說明理由.
【答案】
(1)解:在Rt△ADE中,AE= =3 ,
∴S△ADE= AEDE= ×3 ×3= ,
∵CD⊥平面ADE,∴VC﹣ADE= CDS△ADE= ×6× =9
(2)解:在線段DE上存在一點F,使AF∥平面BCE, = ,
下面給出證明:設F為線段DE上的一點,且 = ,
過F作FM∥CD交CE于點M,則FM= ,
∵CD⊥平面ADE,AB⊥平面ADE,
∴CD∥AB.又CD=3AB,
∴MF∥AB,MF=AB,
∴四邊形ABMF是平行四邊形,
∴AF∥BM,又AF平面BCE,BM平面BCE.
∴AF∥平面BCE.
【解析】(1)在Rt△ADE中,AE= ,可得S△ADE= AEDE.由于CD⊥平面ADE,可得VC﹣ADE= CDS△ADE.(2)在線段DE上存在一點F,使AF∥平面BCE, = ,設F為線段DE上的一點,過F作FM∥CD交CE于點M,由線面垂直的性質可得:CD∥AB.可得四邊形ABMF是平行四邊形,于是AF∥BM,即可證明AF∥平面BCE
【考點精析】關于本題考查的直線與平面平行的判定,需要了解平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】解答
(1)求函數(shù)f(x)= (x<﹣1)的最大值,并求相應的x的值.
(2)已知正數(shù)a,b滿足2a2+3b2=9,求a 的最大值并求此時a和b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(1)在給出的坐標系中,畫出關于x,y兩個相關變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關于變量x的線性回歸直線方程 .
(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式: = , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的左、右焦點分別為F1、F2 , P為C的右支上一點,且|PF2|=|F1F2|,則 等于( )
A.24
B.48
C.50
D.56
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示.
(1)證明:AD⊥BC;
(2)求三棱錐D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為 ,且過點 .
(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若 . (i) 求 的最值;
(ii) 求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,設命題p:函數(shù)y=ax在R上單調遞增;命題q:不等式ax2﹣ax+1>0對x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在我國古代著名的數(shù)學專著《九章算術》里有﹣段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復還迎駑馬,二馬相逢, 問:需日相逢.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC是一個面積較大的三角形,點P是△ABC所在平面內一點且 + +2 = ,現(xiàn)將3000粒黃豆隨機拋在△ABC內,則落在△PBC內的黃豆數(shù)大約是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com