【題目】已知數(shù)列{an},{bn}滿足 , ,其中n∈N+ . (I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(II)設(shè) ,求數(shù)列{cncn+2}的前n項(xiàng)和為T(mén)n .
【答案】(Ⅰ)證明:∵ = = ,
∴數(shù)列{bn}是公差為2的等差數(shù)列,
又 ,∴bn=2+(n﹣1)×2=2n,
∴ ,解得 . …
(Ⅱ)解:由(Ⅰ)可得 ,
∴ ,
∴數(shù)列{cncn+2}的前n項(xiàng)和為
= .
【解析】(I)作差利用遞推關(guān)系、等差數(shù)列的通項(xiàng)公式即可得出.(II)利用“裂項(xiàng)求和”方法即可得出.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),當(dāng)x1 , x2∈(0,+∞)時(shí),都有(x1﹣x2)[f(x1)﹣f(x2)]<0.設(shè) ,則( )
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸的正半軸相交于A,B兩點(diǎn)(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點(diǎn)P滿足PA2+PB2+PT2=12,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如果圓C上存在E,F(xiàn)兩點(diǎn),使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求 + .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下面四個(gè)推理:
①由“若是實(shí)數(shù),則”推廣到復(fù)數(shù)中,則有“若是復(fù)數(shù),則”;
②由“在半徑為R的圓內(nèi)接矩形中,正方形的面積最大”類比推出“在半徑為R的球內(nèi)接長(zhǎng)方體中,正方體的體積最大”;
③以半徑R為自變量,由“圓面積函數(shù)的導(dǎo)函數(shù)是圓的周長(zhǎng)函數(shù)”類比推出“球體積函數(shù)的導(dǎo)函數(shù)是球的表面積函數(shù)”;
④由“直角坐標(biāo)系中兩點(diǎn)、的中點(diǎn)坐標(biāo)為”類比推出“極坐標(biāo)系中兩點(diǎn)、的中點(diǎn)坐標(biāo)為”.
其中,推理得到的結(jié)論是正確的個(gè)數(shù)有( )個(gè)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)大氣污染防治工作得到各級(jí)部門(mén)的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為萬(wàn)元,除塵后當(dāng)日產(chǎn)量時(shí),總成本.
(1)求的值;
(2)若每噸產(chǎn)品出廠價(jià)為48萬(wàn)元,試求除塵后日產(chǎn)量為多少時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄉(xiāng)大學(xué)生攜手回鄉(xiāng)創(chuàng)業(yè),他們引進(jìn)某種果樹(shù)在家鄉(xiāng)進(jìn)行種植試驗(yàn).他們分別在五種不同的試驗(yàn)田中種植了這種果樹(shù)100株并記錄了五種不同的試驗(yàn)田中果樹(shù)的死亡數(shù),得到如下數(shù)據(jù):
試驗(yàn)田 | 試驗(yàn)田1 | 試驗(yàn)田2 | 試驗(yàn)田3 | 試驗(yàn)田4 | 試驗(yàn)田5 |
死亡數(shù) | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求這五種不同的試驗(yàn)田中果樹(shù)的平均死亡數(shù);
(Ⅱ)從五種不同的試驗(yàn)田中隨機(jī)取兩種試驗(yàn)田的果樹(shù)死亡數(shù),記為x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)視為同一事件,并求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,依逆時(shí)針次序排列,點(diǎn)的極坐標(biāo)為.
(1)求點(diǎn),,的直角坐標(biāo);
(2)設(shè)為上任意一點(diǎn),求點(diǎn)到直線距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,
已知圓和圓.
(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為,
求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:
存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com