9.在正方體ABCD-A1B1C1D1中,若AD的中點為M,DD1的中點為N,則異面直線MN與BD所成角的大小是60°.

分析 可先畫出圖形,然后連接BC1,DC1,容易說明∠DBC1為異面直線MN與BD所成角,并可求出該角的大。

解答 解:如圖,

連接BC1,DC1,則:
MN∥BC1,且△BDC1為等邊三角形;
∴MN與BD所成角等于BC1與BD所成角的大;
又∠DBC1=60°;
∴異面直線MN與BD所成角的大小是60°.
故答案為:60°.

點評 考查平行線的判斷,以及異面直線所成角的定義及求法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.設n為正整數(shù),(x-$\frac{1}{x\sqrt{x}}$)n展開式中存在常數(shù)項,則n的一個可能取值為(  )
A.8B.6C.5D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是(  )
A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知圓O:x2+y2=r2(r>0)與直線3x-4y+20=0相切,則r=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,則f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知集合A={a|一次函數(shù)y=(4a-1)x+b在R上是增函數(shù)},集合B=$\left.{\left\{{a|log_a^{\;}\frac{3}{4}<1}\right.}\right\}$.
(1)求集合A,B;
(2)設集合$C=(0,\frac{3}{4})$,求函數(shù)f(x)=x-$\frac{1}{x}$在A∩C上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知球的表面積為64π,則它的體積為( 。
A.16πB.$\frac{256}{3}$πC.36πD.$\frac{100}{3}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系中,定點F(1,0),P是定直線l:x=-1上一動點,過點P作l的垂線與線段PF的垂直平分線相交于點Q,記Q點的軌跡為曲線T,過點E(2,0)作斜率分別為k1,k2的兩條直線AB,CD交曲線T于點A,B,C,D,且M,N分別是AB,CD的中點.
(1)求曲線T的方程;
(2)若k1+k2=1,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.△ABC的三個內(nèi)角A,B,C的對邊分別是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}$.
(1)若C=A+$\frac{π}{3}$,求角A的大;
(2)若cosB=$\frac{1}{4}$,△ABC的周長為5,求b的值.

查看答案和解析>>

同步練習冊答案