14.在△ABC中,已知AB=5,AC=$\sqrt{21}$,BC邊上的中線AD長(zhǎng)為$\sqrt{19}$,則BC=4.

分析 構(gòu)造平行四邊形,利用平行四邊形的對(duì)角線的平方和等于四條邊的平方和即可求解.

解答 解:如圖所示,構(gòu)造平行四邊形,則BC2+(2AD)2=2(AB2+AC2),
∵AB=5,AC=$\sqrt{21}$,BC邊上的中線AD長(zhǎng)為$\sqrt{19}$,
∴BC2+4×19=2(25+21),
∴BC=4.
故答案為:4.

點(diǎn)評(píng) 本題考查解三角形知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,正確運(yùn)用平行四邊形的對(duì)角線的平方和等于四條邊的平方和是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x2-x-$\frac{4x}{x-1}$(x<0),g(x)=x2+bx-2(x>0),b∈R,若f(x)圖象上存在A,B兩個(gè)不同的點(diǎn)與g(x)圖象上A′,B′兩點(diǎn)關(guān)于y軸對(duì)稱,則b的取值范圍為( 。
A.(-4$\sqrt{2}$-5,+∞)B.(4$\sqrt{2}$-5,+∞)C.(-4$\sqrt{2}$-5,1)D.(4$\sqrt{2}$-5,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.過(guò)點(diǎn)P(2,-1)且與向量$\overrightarrow{a}$=(-2,3)平行的直線方程為2x+3y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知H是△ABC的垂心,B=60°,若$\overrightarrow{BH}•\overrightarrow{BC}$=6,則AC的最小值為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等差數(shù)列{an}中,a1+a4+a7=27,a3+a6+a9=9,則a9=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+1≤0}\\{x>0}\\{y≤2}\end{array}\right.$,若z=x2+y2,則z的取值范圍是[1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.(1-$\frac{2}{{x}^{2}}$)(2+$\sqrt{x}$)6的展開式中,x項(xiàng)的系數(shù)是(  )
A.58B.62C.238D.242

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若經(jīng)過(guò)雙曲線左焦點(diǎn)的直線與雙曲線交于A,B兩點(diǎn),則把線段AB稱為該雙曲線的左焦點(diǎn)弦,雙曲線C:$\frac{{x}^{2}}{4}$-y2=1長(zhǎng)度為整數(shù)且不超過(guò)4的左焦點(diǎn)弦的條數(shù)為( 。
A.6B.7C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)雙曲線的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,則該雙曲線的離心率為$\sqrt{3}$,漸近線方程為y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案