對于常數(shù)列1,1,1,…,在第1項(xiàng)與第2項(xiàng)之間插入一個數(shù)2,在第2項(xiàng)與第3項(xiàng)之間插入兩個數(shù)2,在第3項(xiàng)與第4項(xiàng)之間插入三個數(shù)2,依次類推,即在第n項(xiàng)與第n+1項(xiàng)之間插入n個數(shù)2,得到一個新數(shù)列:1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,…,則數(shù)列的前1234項(xiàng)的和等于(     )

A.2450               B.2419               C.2468              D.4919

B


解析:

將數(shù)列作如下分組:

第1組:1,2;第2組:1,2,2;第3組:1,2,2,2;……;第n組:。

則前n組共有項(xiàng)。

當(dāng)n=48時,有項(xiàng),n=49時,有項(xiàng)。

所以前1234項(xiàng)可以排滿前48組,在第49組只能排前10項(xiàng)。因此,數(shù)列的前1234項(xiàng)中有49個1,其余的數(shù)都是2。

故數(shù)列的前1234項(xiàng)的和S=49+(1234-49)2=2419,故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(a∈R)

(1)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,-1)成中心對稱圖形;
(2)當(dāng)x∈[a+1,a+2]時,求證:f(x)∈[-2,-
3
2
]
;
(3)我們利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=2,3,4,…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
(i)如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求實(shí)數(shù)a的取值范圍;
(ii)如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

已知函數(shù)對于任意),都有式子成立(其中為常數(shù)).

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)利用函數(shù)構(gòu)造一個數(shù)列,方法如下:

對于給定的定義域中的,令,,…,,…

在上述構(gòu)造過程中,如果=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過程就停止.

(。┤绻梢杂蒙鲜龇椒(gòu)造出一個常數(shù)列,求的取值范圍;

(ⅱ)是否存在一個實(shí)數(shù),使得取定義域中的任一值作為,都可用上述方法構(gòu)造出一個無窮數(shù)列?若存在,求出的值;若不存在,請說明理由;

(ⅲ)當(dāng)時,若,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,
(1)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,-1)成中心對稱圖形;
(2)當(dāng)x∈[a+1,a+2]時,求證:f(x)∈數(shù)學(xué)公式;
(3)我們利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=2,3,4,…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
(i)如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求實(shí)數(shù)a的取值范圍;
(ii)如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實(shí)數(shù)a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
x+1-a
a-x
(a∈R)
,
(1)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(a,-1)成中心對稱圖形;
(2)當(dāng)x∈[a+1,a+2]時,求證:f(x)∈[-2,-
3
2
]

(3)我們利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=2,3,4,…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
(i)如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求實(shí)數(shù)a的取值范圍;
(ii)如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實(shí)數(shù)a的值

查看答案和解析>>

同步練習(xí)冊答案