如圖6,正方形ABCD所在平面與三角形CDE所在平面ABCD相交于CD,

平面CDE,且,.
(1)求證:平面;
(2)求凸多面體的體積.
(1)見解析(2)
(1)證明:∵平面,平面,

在正方形中,,
,∴平面
,∴平面
(2)在中,,,

過點于點,
平面,平面,
.∵,
平面
,

又正方形的面積,
 

故所求凸多面體的體積為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,平面平面,四邊形都是直角梯形,
。
(Ⅰ)證明:四點共面;
(Ⅱ)設,求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為a的正方體ABCD—A1B1C1D1中,M、N分別是AA1、D1C1的中點,過D、M、N三點的平面與正方體的下底面相交于直線l;

(1)畫出直線l;
(2)設l∩A1B1=P,求PB1的長;
(3)求D到l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
(注意:在試題卷上作答無效)
四棱錐中,底面為矩形,側(cè)面底面。
(Ⅰ)證明:;
(Ⅱ)設側(cè)面為等邊三角形,求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知正四棱柱ABCDA1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點BB1C的垂線交側(cè)棱CC1于點E,交B1C于點F,
(1)求證:A1C⊥平面BDE;
(2)求A1B與平面BDE所成角的正弦值。
(3)設F是CC1上的動點(不包括端點C),求證:△DBF是銳角三角形。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將沿折線CD折成60°的二面角P—CD—A,設E,F(xiàn),G分別是PD,PC,BC的中點。
(I)求證:PA//平面EFG;
(II)若M為線段CD上的一個動點,問當M在什么位置時,MF與平面EFG所成角最大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以一個正方體頂點為頂點的四面體共有(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖a—l—是120°的二面角,A,B兩點在棱上,AB=2,D在內(nèi),三角形ABD是等腰直角三角形,∠DAB=90°,C在內(nèi),ABC是等腰直角三角形∠ACB=
(I)       求三棱錐D—ABC的體積;
(2)求二面角D—AC—B的大小;     
(3)求異面直線AB、CD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,底面是矩形,
的中點,的中點。
(Ⅰ)求異面直線所成的角;(Ⅱ)求二面角的大小。

查看答案和解析>>

同步練習冊答案