15.(1)計(jì)算C104-C73A33
(2)解關(guān)于x的方程:3A8x=4A9x-1

分析 (1)利用組合數(shù)公式和排列數(shù)公式求解.
(2)利用組合數(shù)公式和排列數(shù)公式求解.

解答 解:(1)C104-C73A33
=$\frac{{A}_{10}^{4}}{{A}_{4}^{4}}$-$\frac{{A}_{7}^{3}}{{A}_{3}^{3}}$×${A}_{3}^{3}$
=$\frac{10×9×8×7}{4×3×2×1}$-7×6×5
=0.
(2)∵3A8x=4A9x-1
∴3×$\frac{8!}{(8-x)!}$=4×$\frac{9}{(10-x)!}$,
∴3=$\frac{36}{(9-x)(10-x)}$,
(9-x)(10-x)=12,
解得x=6或x=13(舍),
∴x=6.

點(diǎn)評(píng) 本題考查組合數(shù)、排列數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意利用組合數(shù)公式和排列數(shù)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={1,2,3},B={x|x2-(a+1)x+a=0,x∈R},若A∪B=A,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(∁UA)∪B=( 。
A.{1,2,3}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓:$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{2}$=1,若橢圓的焦距為2,則k為( 。
A.1或3B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.點(diǎn)M是橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1上任一點(diǎn),兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,則△MF1F2的周長(zhǎng)為( 。
A.4B.6C.8D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知某幾何體的正(主)視圖,側(cè)(左)視圖和俯視圖均為斜邊長(zhǎng)為$\sqrt{2}$的等腰直角三角形(如圖),若該幾何體的頂點(diǎn)都在同一球面上,則此球的表面積為( 。
A.B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={(x,y)|2x-y=0},B={(x,y)|3x+y=0},則A∩B={(0,0)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x3+3mx2+3nx-6在x=1及x=2處取得極值.
(1)求m、n的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足an+2-2an+1+an=0(n∈N*),a2=4,其前7項(xiàng)和為42,設(shè)數(shù)列{bn}是等比數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn滿足b1=a1-1,S30-(310+1)S20+310S10=0.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=1+log3$\frac{_{n}}{2}$,dn=$\frac{{a}_{n}}{{c}_{n}}$+$\frac{{c}_{n}}{{a}_{n}}$,求證:數(shù)列{dn}的前n項(xiàng)和Tn≥$\frac{10}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案